CH2M HILL 115 Perimeter Center Place, N.E. Suite 700 Atlanta, GA 30346-1278 Tel 770.604.9095 Fax 770.604.9282 November 12, 2001 Ms. Linda Martin (Code ES318) Southern Division, Naval Facilities Engineering Command P.O. Box 190010 North Charleston, SC 29419-9010 Subject: Contract No. N62467-98-D-0095 Contract Task Order 0011 - Naval Air Station (NAS) Whiting Field - Milton, Florida Final Construction Completion Report - Interim Remedial Action at Site 15, Revision 01 Dear Ms. Martin: CH2M HILL Constructors (CCI) is pleased to provide one (1) copy of Final Construction Completion Report – Interim Remedial Action at Site 15, NAS Whiting Field, Revision 01. Please contact me (850.939.8300, ext. 17) if you have any questions or comments regarding this material. Sincerely, CH2M HILL Amy Twitty, P.G. Project Manager cc: Mark Shull/NTR NAS Pensacola (CD only) Craig Benedikt/EPA (1 copy text only +1 CD) Jim Cason/FDEP (1 copy text only + 1 CD) Terry Hansen/TtNUS (CD only) Larry Smith/TtNUS (CD only) Jim Holland/NASWF (1 full hard copy for Library, 1 copy text only, 1 CD) Ron Stabler (1 copy text + 1 CD) Phillip Ottinger/TtNUS (1 full hard copy for AR, 1 copy text only, 1 CD) CCI Project File No. 151168 ### Construction Completion Report Interim Remedial Action at Site 15 – Southwest Landfill # Naval Air Station Whiting Field Milton, Florida **EPA ID No. FL217002344** Contract No. N62467-98-D-0995 Contract Task Order 0011 November 2001 #### Prepared by: 115 Perimeter Center Place, N.E. Suite 700 Atlanta, GA 30346 Submitted to Department of the Navy, Southern Division Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29406 # Construction Completion Report Interim Remedial Action at Site 15 - Southwest Landfill Naval Air Station Whiting Field Milton, Florida EPA ID No.FL217002344 Revision No. 01 Contract No. N62467-98-D-0995 CTO No. 0011 Submitted to Department of the Navy, Southern Division Naval Facilities Engineering Command Prepared by 115 Perimeter Center Place, N.E. Suite 700 Atlanta, GA 30346 November 2001 Prepared/Approved By: **Contracting Officer** | Mutacily | November 6, 2001 | |-----------------------------------|------------------| | Amy Twitty, P.G., Project Manager | Date | | Approved By: | | | H8 Verman | 07 NOV 01 | | Scott Newman, Program Manager | Date | | Client Acceptance: | | | Shirley a. Benny | 11/8/01 | | U.S. Mavy Residensible Authority | Date / / | | Vehicley & RERRY | | #### **Distribution List** | | Copies | |---|--------| | Southern Division, Naval Facilities Engineering Command | 1 | | NAS Whiting Field | 3 | | Florida Department of Environmental Protection | 1 | | CH2M HILL Constructors, Inc. | 1 | | Tetra Tech NUS, Inc. (Tallahassee, FL) | 2 | | Tetra Tech NUS, Inc. (Oak Ridge, TN) | 2 | | U.S. Environmental Protection Agency. | 1 | This Construction Completion Report for Interim Remedial Action at Site 15 – Southwest Landfill Naval Air Station Whiting Field, Milton, Florida, was prepared under the direction of a Florida registered professional geologist. Amy Twitty, P. G. No. 1703 STATE OF Date ## CERTIFICATION OF TECHNICAL DATA CONFORMITY (NOVEMBER 2001) CH2M HILL Constructors, Inc., hereby certifies, to the best of it knowledge and belief, the technical data delivered herewith under Contract No. N62467-89-D-0995 are complete and accurate and comply with all requirements of this contract. | DATE: | November 2001 | | | |----------|--------------------------------|---|---| | NAME AND | TITLE OF CERTIFYING OFFICIAL: | Amy Twitty, P.G.
Task Order Manager | | | NAME AND | TITLE OF CERITIFYING OFFICIAL: | Amy Twitty, P.G. Project Technical Lead | _ | #### **Certificate of Completion** CH2M HILL Constructors, Inc., attests that, to the best of its knowledge and belief, the interim remedial action at Site 15, delivered under Contract No. N62467-98-D-0995, Naval Air Station Whiting Field, Milton, Florida, Contract Task Order (CTO) No. 0011, has been completed, inspected, and tested, and is in compliance with the contract. roject QC Manager Date #### **FORWARD** To meet its mission objectives, the U.S. Navy performs a variety of operations, some requiring the use, handling, storage, or disposal of hazardous materials. Through accidental spills and leaks and conventional methods of past disposal, hazardous materials may have entered the environment in ways unacceptable by today's standards. With growing knowledge of the long-term effects of hazardous materials on the environment, the Department of Defense (DOD) initiated various programs to investigate and remediate conditions related to suspected past releases of hazardous materials at their facilities. One of these programs is the Installation Restoration (IR) Program. This program complies with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act, the Resource Conservation and Recovery Act and the Hazardous and Solid Waste Amendments of 1984. These acts establish the means to assess and clean up the hazardous waste site for both private-sector and Federal facilities. The CERCLA and SARA act form the basis for what is commonly known as the Superfund program. Originally, the Navy's part of this program was called the Naval Assessment and Control of Installation Pollutants (NACIP) program. Early reports reflect the NACIP process and terminology. The Navy eventually adopted the program structure and terminology of the standard IR program. The IR program is conducted in several stages as follows: - Preliminary assessment (PA) - Site inspection (SI) (Formerly, the PA and SI steps were called the initial Assessment study under the NACIP program) - Remedial investigation and feasibility study - Remedial design and remedial action The Southern Division, Naval Facilities Engineering Command manages and the U.S. Environmental Protection Agency and the Florida Department of Environmental Protection (formerly Florida Department of Environmental Regulation) oversee the Navy environmental program at NAS Whiting Field. All aspects of the program are conducted in compliance with state and Federal Regulations, as ensured by the participation of these regulatory agencies. Questions regarding the CERCLA program at NAS Whiting Field should be addressed to Ms. Linda Martin, Code ES318, at (843) 820-5574. #### **Executive Summary** Site 15 is a 21-acre parcel located along the southwestern facility boundary of NAS Whiting Field near the South Air Field. Site 15 was an operational landfill from 1965 to 1979 and consisted of approximately seven trenches trending north-northeast, which covered 15 of the 21 acres. The landfill reportedly received the majority of waste generated at NAS Whiting Field which included general refuse, waste paints, oils, solvents, thinner, hydraulic fluid, bagged asbestos, and potentially polychlorinated biphenyl (PCB)-contaminated transformer oil (Envirodyne Engineers, Inc., 1985). It was estimated approximately 3,000 to 4,500 tons of waste were disposed of at the site annually. There is no evidence of a clay soil cap over the site; and because the soil at the site is predominantly silty sand, much of the onsite rainfall infiltrates the soil. The site topography trends to the southwest towards Clear Creek and is covered with young pine exceeding 20 feet in height (Harding Lawson Associates, 1999). A surface soil assessment was conducted during the RI of Site 15. Phase IIA included the collection of five surface soil samples (15-SL-01 through 15-SL-05) and was conducted in 1992. During Phase IIB conducted in 1995, 25 additional surface soil samples were collected (15S00101 through 15S02501). Surface soil samples were collected from 0 to 12 inches bls. Concentrations of total arsenic exceeded the residential and industrial standards for the U.S. Environmental Protection Agency (USEPA) Region III Risk-Based Concentrations (0.43 and 3.8 mg/kg, respectively) and the residential and industrial standards for soil cleanup goals for Florida of 0.8 and 4.62 mg/kg, respectively. The Florida Department of Environmental Protection (FDEP) has approved a site-specific industrial soil cleanup goal for arsenic of 4.62 mg/kg at Site 15 at NAS Whiting Field. Phase IIB surface soil sample 15S01501 exhibited an arsenic concentration of 6.8 mg/kg (Harding Lawson Associates, 1999). Vanadium concentrations in surface soil exceeded the Florida residential Soil Cleanup Target Level (SCTL) in six locations but did not exceed the industrial SCTL. Phenol and 4-Methylphenol were detected in subsurface soil at concentrations above the Florida SCTL for leaching. Aroclor-1242 was detected in one subsurface sample (collected from 10 to11 feet bls) and exceeded the Florida residential and industrial SCTL for direct exposure, but was below the FDEP leachability criteria and the USEPA Region III industrial-use RBC. The Human Health Risk Assessment conducted by Harding Lawson Associates identified three inorganic analytes, arsenic, iron, and vanadium, as Human Health Chemicals of Potential Concern (HHCOPCs) in surface soil at Site 15. Aroclor-1242 was identified as an HHCOPC for subsurface soil. The Human Heath Risk Assessment further stated the HHCOPCs detected in surface soil do not pose unacceptable carcinogenic risks to the receptors evaluated based on evaluation of the samples using USEPA guidelines and target risk range. Therefore, surface soil concentrations of iron and vanadium do not pose a human health or ecological threat at Site 15. The total Excess Lifetime Cancer Risk, associated with exposure to soil by a hypothetical future resident, exceeds Florida's target risk level of concern due to arsenic. The results of the Ecological Risk Assessment conducted by Harding Lawson Associates indicate risks are not predicted for ecological receptor
populations at Site 15. Based on this information, the Navy elected to conduct additional sampling activities and possible removal actions due to arsenic concentration in the surface soil at the former Southwest Landfill. As outlined in the project scope, CCI conducted the following activities at NAS Whiting Field, Site 15: Sampled, delineated, and removed arsenic impacted soil from the RI sample 15SO1501 area in exceedance of the site specified industrial criteria level of 4.62 mg/kg - Transported and disposed of arsenic impacted soil from the site to an approved and permitted offsite facility - Conducted QC activities during construction and conducted Quality Assurance reporting (provided in this report) to document the IRA efforts. On June 13, 2000, CCI collected 20 surface soil samples for source delineation of arsenic in the location of sample 15S01501. A 75-foot by 75-foot sampling grid was established around the approximate location of the sample (as identified by the land surveyor). The samples were collected on 25-foot centers (16 samples) and four additional samples were collected from an approximately 10-foot radius of the original sample. Initially, only the four samples immediately surrounding the original sample locations were analyzed for arsenic. The decision to continue analyzing samples for arsenic was based on the analytical results of these four initial samples. Due to the results from the initial round of sampling, a total of four surface soil samples were analyzed for source delineation of arsenic in the vicinity of sample 15SO1501. Of the four initial samples collected and analyzed for arsenic in the vicinity of RI Phase IIA surface soil sample 15SO1501, none exhibited an arsenic concentration above the associated FDEP-approved site-specific soil cleanup goal of 4.62 mg/kg. Therefore, further delineation was unnecessary. As a result, a decision was made by the Navy to remove the arsenic impacted soil in the immediate vicinity of RI sample 15SO1501. Arsenic impacted soil removal activities are discussed in Section 5.0 Remedial Action Activities. A 10-foot by 10-foot by 2-foot deep volume of soil was identified for excavation in the vicinity of RI Phase IIB surface soil sample 15SO1501. CCI mobilized personnel and resources to perform and complete soil excavation activities on July 21, 2000. Approximately 7.4 cubic yards (bank) of soil was excavated from the designated area. NAS Whiting Field directed CCI to excavate around and preserve a pine tree (greater than 6 inches in diameter) in the center of the excavation area. Extensive previous site characterization investigations and surface soil sampling activities at Site 15 had safely determined the constituent of concern (COC) to be inorganic and therefore no field screening was conducted while the arsenic impacted soil was excavated. Once excavated, soil was placed directly into a single roll-off box. The roll-off box was covered with a canvas tarp to prevent contact with rainfall (run-on control). The roll-off box was labeled and transferred to a designated onsite staging area until waste profile acceptance was obtained and transportation and disposal activities performed. One roll-off box was partially filled during the excavation activities at the site. NAS Whiting Field had suggested and encouraged disposal of the excavated soil at the local municipal landfill, Santa Rosa County Landfill, since the soil was characterized as non-hazardous waste. The analytical data from the RI Phase IIB surface soil sample 15SO1501 and the CCI June 2000 sampling event were submitted as part of the application and request made to Santa Rosa County Landfill for disposal made by CCI and NAS Whiting Field. On August 11, 2000, the soil was transported by Southern Waste Services to Santa Rosa County Landfill, Milton, Florida for final disposal. No liquid waste was generated during the IRA. CCI performed confirmatory sampling and analysis to verify the media exceeding the site specific remediation goals had been removed. Confirmation samples consisted of one grab sample and one duplicate sample collected from the bottom of the excavation. No sidewall samples were collected since the four surrounding grid samples did not exhibit elevated arsenic concentrations. Analytical results were compared to the appropriate arsenic remediation goal of 4.62 mg/kg. Once the excavation was completed, a confirmation sample was collected. The sample was collected from the center of the bottom of the excavation. The sample was split as a duplicate. The samples were sent to a Navy-approved laboratory (Severn Trent Laboratory, Pensacola, Florida) and analyzed using USEPA analytical Method SW-846 6010. Once the analysis was completed, the data were validated using industry standards and qualified. The results of the confirmation samples were 1.4 mg/kg for the original and 1.3 mg/kg for the duplicate. Since the samples were collected below the 2-foot excavation, the results were compared to the arsenic SCTL for Leachability Based on Groundwater (FAC Chapter 62-777) of 29 mg/kg. The results were below the SCTL. Upon receipt of excavation confirmation sample analysis, the excavation area was restored. Clean backfill soil, from a tested and approved offsite borrow source, was placed in the excavation in 1-foot lifts. In order to prevent root damage to the preserved lone pine tree in the center of the excavation area, the soil was not machine compacted. The excavation area was slightly over-filled and the center crowned to compensate for any potential future settlement. No fertilizer or vegetative cover was required or installed because the area had been previously designated a natural area and re-seeding was unnecessary. - All sampling locations associated with the IRA at Site 15 were surveyed by CH2M HILL personnel who are licensed professional land surveyors in the State of Florida. Horizontal control surveying (X, Y-coordinates) and vertical control surveying (Z-coordinate) were performed at the ground surface of each sampling location. The survey coordinates were used to locate the sampling points on the maps. - Based on the results of the IRA and the final acceptance of the site restoration during site inspection, CCI recommends no further IRA activities at Site 15 in the vicinity of RI sample 15SO1501. - Land Use Controls will be implemented at Site 15 to ensure humans are not exposed to Aroclor-1242 at a depth of 10 to11 feet bls in the vicinity of RI sample 15SS0804. #### **Contents** | Fore | | | | |------|--------|--|-----| | | | ummary | | | | | - d at' - a | | | 1.0 | | oduction | | | | 1.1 | Project Scope | | | | 1.2 | Site History | | | | 1.3 | Regulatory Framework | | | • • | 1.4 | Remedial Action Objectives | | | 2.0 | | itional Soil Sampling and Analysis | | | | 2.1 | Soil Sampling | | | | 2.2 | Analytical Results | | | 3.0 | | nificant Events | | | | 3.1 | Chronology of Events | | | | 3.2 | Problems Encountered | | | 4.0 | | ormance Standards and Construction Quality Control | | | | 4.1 | Field Observation | 4-1 | | | 4.2 | Confirmatory Sampling and Analysis | 4-1 | | | 4.3 | Surveying | 4-1 | | | 4.4 | Backfill Testing and Site Restoration | | | | 4.5 | Wastestream Sampling and Analysis Waste Approval | | | | | 4.5.1 Excavated Soil | | | | | 4.5.2 Contact and Decontamination Water | | | | 4.6 | Equipment Decontamination | | | 5.0 | | nedial Action Activities | | | | 5.1 | Remedial Action Participants | | | | 5.2 | Summary of Remedial Action Activities | | | | | 5.2.1 Excavation Activities | | | | | 5.2.2 Excavated Media Management | | | | | 5.2.3 Waste Characterization and Disposal | | | | 5.3 | Confirmation Sampling | | | | 5.4 | Site Restoration | 5-2 | | 6.0 | Final | Il Inspection and Site Status Summary | 6-1 | | | 6.1 | Participants | | | | 6.2 | Deficiencies | 6-1 | | | 6.3 | Resolution of Deficiencies | 6-1 | | | 6.4 | Site Status Summary | 6-1 | | 7.0 | Cond | clusions | 7-1 | | 8.0 | Refe | erences | 8-1 | | | | | | | List | of Fig | jures | | | | • | | | | 1-1 | | Location Map | | | 1-2 | | se 11A and Phase 11B Surface Soil Sample Locations | | | 2-1 | | pling Grid Layout and Arsenic Analytical Results | | | 5-1 | Orga | anization of Remedial Action Participants | 5-1 | | List | of Tab | bles | | | 2 4 | C-== | otruction Coguence Cummon. | 0.4 | | 3-1 | Cons | struction Sequence Summary | 3-1 | #### **Appendices** - Data Quality Evaluation Report - Survey Data Waste Disposal Information Waste Disposal Summary B - Manifests - Weight Tickets - Certificates of Disposal/Destruction - **Analytical Data** D - **Delineation Sampling Analytical Results** - Confirmation Sampling Analytical Results Florida Department of Environmental Protection Letters Ε #### **Glossary** bls below land surface CCI CH2M HILL Constructors, Inc. CD compact disk CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CLP Contract Laboratory Program COC constituent of concern CompQAP Comprehensive Quality Assurance Plan CTO Contract Task Order DQE Data Quality Evaluation FAC Florida Administrative Code FDEP Florida Department of Environmental Protection HHCOPC Human Heath Chemical of Potential Concern IRA interim remedial action mg/kg milligrams per kilogram NAS Naval Air Station NAVFAC Naval Facilities Engineering Command PCB polychlorinated biphenyl PPE personal protective equipment QC Quality Control RBCs Risk-based Concentrations RI Remedial Investigation SCTL Soil Cleanup Target Level TAL target analyte list T&D transportation and disposal USEPA U.S. Environmental Protection Agency VOC volatile organic compound ٧ #### 1.0 - Introduction CH2MHILL Constructors, Inc. (CCI) was contracted by the Department of the Navy, Southern Division, Naval Facilities Engineering Command (NAVFAC), to prepare this Construction Completion Report for work performed by CCI at Naval Air Station (NAS) Whiting Field in Milton,
Florida. This work was performed under Contract No. N62467-98-D-0995, Contract Task Order (CTO) No. 0011 and in accordance with the management approach outlined in the Contract Management Plan (CCI, July 1998), and the Final Basewide Work Plan (CCI, November 1999). The objective of this report is to provide documentation of the additional soil sampling and interim remedial action (IRA) activities associated with the removal of arsenic impacted soil associated with the former landfill. Figure 1-1 presents the site location map. #### 1.1 - Project Scope The Scope of Work for the project included the following tasks: - Perform surface soil sampling at Site 15 to delineate the extent of arsenic in surface soil in the vicinity of Remedial Investigation (RI) sample 15S01501 (CCI, July 2000) - Collect 20 surface soil samples: 16 samples from 1 foot below land surface (bls) using stainless steel hand augers from a 75-foot by 75-foot sampling grid, on 25-foot centers; and an additional four samples from an approximate 10-foot radius from the original sample location (15S01501) - Develop a Site 15 IRA Work Plan (CCI, 2000), describing activities related to the excavation of a specified area and volume of arsenic impacted soil above the site specific industrial cleanup criteria of 4.62 milligrams per kilogram (mg/kg) for Site 15, confirmation sampling, and site restoration. #### 1.2 – Site History Site 15 is a 21-acre parcel located along the southwestern facility boundary of NAS Whiting Field near the South Air Field (Figure 1-1). Site 15 was an operational landfill from 1965 to 1979 and consisted of approximately seven trenches trending north-northeast, which covered 15 of the 21 acres. The landfill reportedly received the majority of waste generated at NAS Whiting Field which included general refuse, waste paints, oils, solvents, thinner, hydraulic fluid, bagged asbestos, and potentially polychlorinated biphenyl (PCB)-contaminated transformer oil (Envirodyne Engineers, Inc., 1985). It was estimated approximately 3,000 to 4,500 tons of waste were disposed of at the site annually. There is no evidence of a clay soil cap over the site; and because the soil at the site is predominantly silty sand, much of the onsite rainfall infiltrates the soil. The site topography trends to the southwest towards Clear Creek and is covered with young pine exceeding 20 feet in height (Harding Lawson Associates, 1999). A surface soil assessment was conducted during the RI of Site 15. Phase IIA included the collection of five surface soil samples (15-SL-01 through 15-SL-05) and was conducted in 1992. During Phase IIB conducted in 1995, 25 additional surface soil samples were collected (15S00101 through 15S02501). Surface soil samples were collected from 0 to 12 inches below land surface (bls). Figure 1-2 shows the sample locations for both investigations. Concentrations of total arsenic exceeded the residential and industrial standards for the U.S. Environmental Protection Agency (USEPA) Region III Risk-Based Concentrations (RBCs) (0.43 and 3.8 mg/kg, respectively) and the residential and industrial standards for soil cleanup goals for Florida of 0.8 and 4.62 mg/kg, respectively. The Florida Department of Environmental Protection (FDEP) has approved a site-specific industrial soil cleanup goal for arsenic of 4.62 mg/kg at Site 15 at NAS Whiting Field. Phase IIB surface soil sample 15S01501 exhibited an arsenic concentration of 6.8 mg/kg (Harding Lawson Associates, 1999). Vanadium concentrations in surface soil exceeded the Florida residential Soil Cleanup Target Level (SCTL) in six locations but did not exceed the industrial SCTL. Phenol and 4-Methylphenol were detected in subsurface soil at concentrations above the Florida SCTL for leaching. Aroclor-1242 was detected in one subsurface sample (collected from 10-11 feet bls) and exceeded the Florida residential and industrial SCTL for direct exposure but was below the FDEP leachability criteria and the USEPA Region III industrial-use RBC. The Human Health Risk Assessment conducted by Harding Lawson Associates identified three inorganic analytes, arsenic, iron and vanadium, as Human Health Chemicals of Potential Concern (HHCOPCs) in surface soil at Site 15. Aroclor-1242 was identified as an HHCOPC for subsurface soil. The Human Heath Risk Assessment further stated the HHCOPCs detected in surface soil do not pose unacceptable carcinogenic risks to the receptors evaluated based on evaluation of the samples using USEPA guidelines and target risk range. Therefore, surface soil concentrations of iron and vanadium do not pose a human health or ecological threat at Site 15. The total Excess Lifetime Cancer Risk, associated with exposure to soil by a hypothetical future resident, exceeds Florida's target risk level of concern due to arsenic. The results of the Ecological Risk Assessment conducted by Harding Lawson Associates indicate risks are not predicted for ecological receptor populations at Site 15. Based on this information, the Navy elected to conduct additional sampling activities and possible removal actions due to arsenic concentration in the surface soil at the former Southwest Landfill. #### 1.3 – Regulatory Framework The additional sampling and interim action were performed based on the results of the RI under the guidelines set forth by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). During the review of the RI, it was noted the arsenic contamination in surface soil was not fully delineated. Once the arsenic was delineated and removed, the threat of direct exposure would no longer exist. This is consistent with the final remedy of the site detailed in the Feasibility Study and subsequent Record of Decision currently being prepared by Harding Lawson Associates. #### 1.4 – Remedial Action Objectives Based on previous investigations, the remedial action objectives for the project were defined by the Navy as follows: - Collect additional samples in the vicinity of former sample 15S01501 and analyze for total arsenic - Determine horizontal extent of arsenic in the surface soil in exceedance of 4.62 mg/kg - Remove surface soil at Site 15 exceeding 4.62 mg/kg - Determine whether soil in the bottom of the excavation greater than 2 feet bls exceeds the arsenic SCTL for Leachability Based on Groundwater (Florida Administrative Code [FAC] Chapter 62-777) of 29 mg/kg - Dispose of the excavated soils and any generated aqueous waste in accordance with applicable rules and regulations - Perform site restoration activities #### 2.0 Additional Soil Sampling and Analysis The following sections describe sampling and analysis activities related to arsenic contamination. #### 2.1 - Soil Sampling On June 13, 2000, CCI collected 20 surface soil samples for source delineation of arsenic in the location of sample 15S01501. A 75-foot by 75-foot sampling grid was established around the approximate location of the sample (as identified by the land surveyor). The samples were collected on 25-foot centers (16 samples) and four additional samples were collected from an approximately 10-foot radius of the original sample. Initially, only the four samples immediately surrounding the original sample locations were analyzed for arsenic. The decision to continue analyzing samples for arsenic was based on the analytical results of these four initial samples. Due to the results from the initial round of sampling, a total of four surface soil samples were analyzed for source delineation of arsenic in the vicinity of sample 15SO1501 (Figure 2-1). All samples were collected from the land surface to approximately 1 foot bls using decontaminated stainless steel hand augers. Soil was placed into stainless steel bowls, thoroughly mixed using stainless steel spoons, and placed in glass jars. Soil sample information was recorded in a bound logbook by CCI personnel. All sampling was conducted in accordance with CCI's FDEP-approved Field Comprehensive Quality Assurance Plan (CompQAP). All samples were analyzed by Severn Trent Laboratories in Pensacola, Florida (a Navy-approved laboratory) on a 48-hour turnaround time. Samples were analyzed for total arsenic only using USEPA SW 846 Method 6010. Level III, Definitive, Data Quality Objectives were used for analytical QC and reporting purposes. #### 2.2 - Analytical Results Of the four initial samples collected and analyzed for arsenic in the vicinity of RI Phase IIA surface soil sample 15SO1501, none exhibited an arsenic concentration above the associated FDEP-approved site-specific soil cleanup goal of 4.62 mg/kg (Figure 2-1). Therefore, further delineation was unnecessary. As a result, a decision was made by the Navy to remove the arsenic impacted soil in the immediate vicinity of RI sample 15SO1501. Arsenic impacted soil removal activities are discussed in Section 5.0 Remedial Action Activities. The Data Quality Evaluation (DQE) performed for the analytical results is presented in Appendix A. Survey coordinates for the soil sample locations are presented in Appendix B. #### **LEGEND** Phase IIB surface soil 15SO1501 sample and designation △ Additional grid surface soil 15SO2601 sample and designation Arsenic Analytical Result (mg/kg) (6.8) #### NOTES: 1. Soil cleanup target level for arsenic is 4.62 mg/kg. #### FIGURE 2-1 Grid Layout and Arsenic Analytical Results Surrounding Phase IIB Soil Sample 15SO1501 Site 15, NAS Whiting Field #### 3.0 - Significant Events The following sections describe the major events for the Site 15. A summary of these events is presented in Table 3-1. #### 3.1 - Chronology of Events The events for the IRA activities at the site are listed chronologically in Table 3-1. Specific details describing the construction activities are found in Section 5.0 Remedial Action Activities of this report. **TABLE 3-1**Construction Sequence Summary | Event | Date |
---|--------------------| | Additional Delineation Sampling events | June 13, 2000 | | Submit IRA Work Plan for Excavation, Sampling, T&D, and Restoration | July 19, 2000 | | CCI IRA Work Plan Approval | July 20, 2000 | | Site 15 Excavation | July 21, 2000 | | Excavation Confirmation Sampling | July 24, 2000 | | Excavated Soil Disposal Profile Acceptance (Santa Rosa County Landfill) | July 27, 2000 | | Excavation Confirmation Sample Data received | August 9, 2000 | | Transportation & Disposal of Excavated Soil | August 11, 2000 | | Site 15 Site Restoration (backfill) Operations | September 11, 2000 | T&D = transportation and disposal #### 3.2 - Problems Encountered No significant problems were encountered during the execution of the Site 15 scope of work. The work was conducted concurrently with other CTO activities at NAS Whiting Field. #### 4.0 – Performance Standards and Construction Quality Control The following quality controls were implemented during the course of the project: - Field observation - Excavation control - Confirmation sampling and analysis - Surveying - Backfill testing (clean) and site restoration - Wastestream sampling and analysis - Waste approval packages - Transportation and disposal - Equipment decontamination #### 4.1 – Field Observation CCI provided oversight of all field operations throughout the course of the project. CCI field oversight staff included a project manager, site superintendent (including health and safety oversight) and a project quality control (QC) manager. Detailed records of subcontractor activities were maintained in field logbooks and site field records. #### 4.2 - Confirmatory Sampling and Analysis CCI performed confirmatory sampling and analysis to verify the media exceeding the site specific remediation goals had been removed. Confirmation samples consisted of one grab sample and one duplicate sample collected from the bottom of the excavation. No sidewall samples were collected since the four surrounding grid samples did not exhibit elevated arsenic concentrations. Analytical results were compared to the appropriate arsenic remediation goal of 4.62 mg/kg. #### 4.3 - Surveying All sampling locations associated with the IRA at Site 15 were surveyed by CH2M HILL personnel who are licensed professional land surveyors in the State of Florida. Horizontal control surveying (X, Y-coordinates) and vertical control surveying (Z-coordinate) were performed at the ground surface of each sampling location. The survey coordinates were used to locate the sampling points on the maps. Survey data are included in Appendix B. #### 4.4 - Backfill Testing and Site Restoration A nearby borrow pit was sampled on August 23, 2000, and analyzed for a full suite of parameters to determine if it was suitable for backfill. Analyses included volatile organic compounds (SW 846 Method 8260), semi-volatile organic compounds (USEPA SW 846 Method 8270), metals (USEPA SW 846 Methods 6010 and 7421), petroleum hydrocarbons (Florida Residual Petroleum Organic methodology) PCBs (USEPA SW 846 Method 8082), pesticides and herbicides (USEPA SW 846 Methods 8081 and 8151). Backfill soil analytical results were compared to the SCTLs for direct exposure, residential listed in Chapter 62-777 (FAC). Arsenic results were compared to the site-specific cleanup level of 4.62 mg/kg. Once the soil was deemed useable, the excavation was backfilled and leveled to grade. Since the excavation is in the middle of the woods, compaction tests were not performed. #### 4.5 - Wastestream Sampling and Analysis Waste Approval #### 4.5.1 - Excavated Soil Excavated arsenic impacted soil from Site 15 was accepted by the Santa Rosa County Landfill, Milton, Florida, as non-hazardous waste based on generator knowledge and certification provided by NAS Whiting Field. Investigation derived data was also provided to Santa Rosa County Landfill as part of the request for disposal approval. Manifests are included in Appendix C. #### 4.5.2 – Contact and Decontamination Water Excavation and contact water were not generated or collected during the course of IRA activities. Dry decontamination procedures were used to clean major equipment. #### 4.6 - Equipment Decontamination All equipment was decontaminated prior to removal from the site. All waste generated by the activities was containerized and removed from the site and disposed. Upon completion of decontamination, the site QC staff inspected all equipment prior to demobilization. #### 5.0 - Remedial Action Activities #### 5.1 - Remedial Action Participants The remedial action participants and their respective responsibilities for the project. Construction activities are shown below in Figure 5-1. FIGURE 5-1 Organization of Remedial Action Participants #### 5.2 - Summary of Remedial Action Activities The following sections describe the interim remedial activities, confirmation sampling, waste characterization and disposal, and site restoration activities associated with Site 15 – Southwest Landfill, NAS Whiting Field, Milton, Florida. #### 5.2.1 – Excavation Activities A 10-foot by 10-foot by 2-foot deep volume of soil was identified for excavation in the vicinity of RI Phase IIB surface soil sample 15SO1501. CCI mobilized personnel and resources to perform and complete soil excavation activities on July 21, 2000. Approximately 7.4 cubic yards (bank) of soil was excavated from the designated area. NAS Whiting Field directed CCI to excavate around and preserve a pine tree (greater than 6 inches in diameter) in the center of the excavation area. Extensive previous site characterization investigations and surface soil sampling activities at Site 15 had safely determined the constituent of concern (COC) to be inorganic and therefore no field screening was conducted while the arsenic impacted soil was excavated. #### 5.2.2 - Excavated Media Management Once excavated, soil was placed directly into a single roll-off box. The roll-off box was covered with a canvas tarp to prevent contact with rainfall (run-on control). The roll-off box was labeled and transferred to a designated onsite staging area until waste profile acceptance was obtained and transportation and disposal activities performed. #### 5.2.3 - Waste Characterization and Disposal One roll-off box was partially filled during the excavation activities at the site. NAS Whiting Field had suggested and encouraged disposal of the excavated soil at the local municipal landfill, Santa Rosa County Landfill, since the soil was characterized as non-hazardous waste. The analytical data from the RI Phase IIB surface soil sample 15SO1501 and the CCI June 2000 sampling event were submitted as part of the application and request made to Santa Rosa County Landfill for disposal made by CCI and NAS Whiting Field. On August 11, 2000, the soil was transported by Southern Waste Services to Santa Rosa County Landfill, Milton, Florida for final disposal. No liquid waste was generated during the IRA. A copy of the Non-Hazardous Waste Manifest for the arsenic impacted soil and the weigh ticket is located in Appendix C. #### 5.3 - Confirmation Sampling Once the excavation was completed, a confirmation sample was collected. The sample was collected from the center of the bottom of the excavation. The sample was split as a duplicate. The samples were sent to a Navy-approved laboratory (Severn Trent Laboratory, Pensacola, Florida) and analyzed for arsenic using USEPA Method SW-846 6010. Once the analysis was completed, the data were validated using industry standards and qualified. The results of the confirmation samples were 1.4 mg/kg for the original and 1.3 mg/kg for the duplicate. Since the samples were collected below the 2-foot excavation, the results were compared to the arsenic SCTL for Leachability Based on Groundwater (FAC Chapter 62-777) of 29 mg/kg. The results were below the SCTL. The analytical data are presented in Appendix D. The Data Evaluation Report is included in Appendix A. #### 5.4 - Site Restoration Upon receipt of excavation confirmation sample analysis, the excavation area was restored. Clean backfill soil, from a tested and approved offsite borrow source, was placed in the excavation in 1-foot lifts. In order to prevent root damage to the preserved lone pine tree in the center of the excavation area, the soil was not machine compacted. The excavation area was slightly over-filled and the center crowned to compensate for any potential future settlement. No fertilizer or vegetative cover was required or installed because the area had been previously designated a natural area and re-seeding was unnecessary. #### 6.0 - Final Inspection and Site Status Summary On October 13, 2000, Mr. Jim Holland, NAS Whiting Field Public Works Environmental Manager, inspected the site for compliance and acceptance. The participants and results of the inspection are presented below. #### 6.1 - Participants The following individuals participated in the final inspection: - NAS Whiting Field Public Works Environmental Manager - CCI Site Manager - CCI Project QC Manager #### 6.2 - Deficiencies During the performance of the project, no items were noted for correction. #### 6.3 - Resolution of Deficiencies None required. #### 6.4 - Site Status Summary As outlined in the project scope, CCI conducted the following activities at NAS Whiting Field, Site 15: - Sampled, delineated, and removed arsenic impacted soil from the RI sample 15SO1501 area in exceedance of the site specified industrial criteria level of 4.62 mg/kg - Transported and disposed of arsenic impacted soil from the site to an approved and permitted offsite facility - Conducted QC activities during construction and conducted Quality Assurance reporting (provided in this report) to document the IRA efforts Based on the results of the IRA and the final acceptance of the site restoration during site inspection, CCI recommends no
further IRA activities at Site 15 in the vicinity of RI sample 15SO1501. #### 7.0 - Conclusions A summary of the results of the RI conducted by Harding Lawson Associates and the interim remedial action conducted by CCI at Site 15 are presented below: - In a letter dated April 27, 1998, FDEP approved a site-specific industrial soil cleanup goal for arsenic of 4.62 mg/kg at various sites including Site 15 at NAS Whiting Field. - During the RI, Phase IIB surface soil sample 15S01501 exhibited an arsenic concentration of 6.8 mg/kg, above the USEPA Region III industrial RBC, the FDEP industrial SCTL and the sitespecific cleanup goal of 4.62 mg/kg. - During the RI, vanadium concentrations in surface soil exceeded the Florida residential SCTL in six locations but did not exceed the industrial SCTL. - During the RI, phenol and 4-Methylphenol were detected at concentrations above the Florida SCTL for leaching. Leachability issues will be addressed under the basewide groundwater investigation (Site 40). - During the RI, Aroclor-1242 was detected in one subsurface sample (collected from 10 to11 feet bls) and exceeded the Florida residential and industrial SCTL for direct exposure but was below the FDEP leachability criteria and the USEPA Region III industrial-use RBC. - The Human Health Risk Assessment conducted as part of the RI by Harding Lawson Associates identified three inorganic analytes, arsenic, iron and vanadium, as Human Health Chemicals of Potential Concern (HHCOPCs) in surface soil at Site 15. Aroclor-1242 was identified as an HHCOPC for subsurface soil. - The Human Heath Risk Assessment portion of the RI further stated the HHCOPCs detected in surface soil do not pose unacceptable carcinogenic risks to the receptors evaluated based on evaluation of the samples using USEPA guidelines and target risk range. Therefore, surface soil concentrations of iron and vanadium do not pose a human health or ecological threat at Site 15. - The total Excess Lifetime Cancer Risk, associated with exposure to soil by a hypothetical future resident, exceeds Florida's target risk level of concern due to arsenic. - The results of the Ecological Risk Assessment conducted as part of the RI by Harding Lawson Associates indicate risks are not predicted for ecological receptor populations at Site 15. - On June 13, 2000, 20 surface soil samples were collected at Site 15 in the vicinity of RI Phase IIB surface soil sample 15SO1501 for the delineation of arsenic. - Based on the results of the soil sampling, a 10-foot by 10-foot by 2-foot deep volume of soil was identified for excavation in the area. - On July 21, 2000, approximately 7.4 cubic yards (bank) of soil was excavated from the site. The arsenic-impacted soil was transported offsite and disposed at an appropriate waste facility as non-hazardous waste. - Arsenic concentrations in surface soil above the FDEP industrial screening criteria have been excavated and removed from the site. - The site was restored to its original condition and after inspection by base personnel was accepted. - In a letter dated April 11, 2001, FDEP concluded "the arsenic levels observed in soils at NAS Whiting Field are within the range of concentrations at the outlying fields and they therefore are in naturally occurring concentrations." - In accordance with the April 11, 2001 FDEP letter, arsenic concentrations in soil at Site 15 are consistent with naturally occurring concentrations and do not constitute a problem at the site. - The remedial action at this site has achieved the objective and was conducted in accordance with regulatory standards. - Land Use Controls will be implemented at Site 15 to ensure humans are not exposed to Aroclor-1242 at a depth of 10-11 feet bls in the vicinity of RI sample 15SS0804. #### 8.0 - References - CCI Constructors, Inc. Contract Management Plan, Contract No. N62467-98-D-0995. July 1998. - CCI Constructors, Inc. Final Basewide Work Plan, NAS Whiting Field, Milton, Florida. November 1999. - CCI Constructors, Inc. Site 15 Sampling and Analysis Plan, Naval Air Station Whiting Field. July 2000. - CCI Constructors, Inc. Interim Remedial Action Work Plan, Site 15, Southwest Landfill, Naval Air Station Whiting Field. 2000. Harding Lawson Associates, *Remedial Investigation Report, Site 15, Southwest Landfill, Naval Air Station Whiting Field.* December 1999. # Appendix A Data Quality Evaluation Report ## Chemical Analytical Data Evaluation Report | Report Type:
Project Name: | [] Preliminary [X] Final NASWF, Site 15, CTO 0011 | Date Received: Project Number: | 7/19/00
151168.20.01.03.90 | |-------------------------------|--|--------------------------------|-------------------------------| | Laboratory: | STL-Pensacola | Lab Project/Case No: | C006350 | | Analyses/Method Nos: | Arsenic by 6010 | - | | | Sample Nos: | 15SO3401, 15SO3501, 15SO3601, 15 | SO3601DUP, 15SO3701, 15RO | 0301 | | Evaluator: | Theresa Rojas | Date Evaluated: | 07/19/00 | | Data Package Deliverable | es Requirement: CCI Level A | | | | [] Other, please descr | ihe | | | | Quality Control Deliverables | Required | Received | Passed | Failed | |---|----------|----------|--------|--------| | PQL, MDL, RL, etc meets DQOs | | | | | | Comment: | - | | | | | Action Limits are Unknown. | | | | | | Holding Times | | | X | | | Comment: | | | | | | Sample Condition (preservatives, containers, temperature, etc) / Case Narrative | X | X | X | I | | Comment: | | | | | | Lab Control Sample Recoveries | X | X | Х | | | Comment: | | | | | | Lab Control Sample Duplicate or Other Spike Recoveries | | | | | | Comment: | | | | | | Lab Control Sample Duplicate or Other Laboratory Duplicate RPD | | | | | | Comment: | | | | | | Matrix Spike Recoveries | X | X | X | | | Comment: | | | | | | Matrix Spike Duplicate Recoveries | X | X | Х | 7 | | Comment: | | | | | | Matrix Spike / Matrix Spike Duplicate RPD | X | X | X | | | Comment: | | | | | | Laboratory Blanks (daily, method, instrument) | X | X | Х | | | Comment: | | | | | | Field Blanks (trip, eqpt rinsate, ambient, matrix) | | | | | | Comment: | | | | | | Quality Control Deliverables | | | Required | Received | Passed | Failed | |---|--|-------------------|-------------------|-------------|------------|------------| | Field Duplicates RPD | | | X | X | X | | | Comment: | | | | | | | | 17% RPD | | | | | | | | Serial Dilutions | | | | | | | | Comment: | | | | | | | | ICP Interference Check | | .] | | | | | | Comment: | | | | | | | | Percent Moisture/Solids | | | | | | | | Comment: | | | | | | | | Initial / Continuing Verification | | | | | | | | Comment: | | | | | | | | Sample Prep Worksheets, Run Logs | | | | | | | | Comment: | | | | | | | | Raw Data Calculations | | | | | | | | Comment: | | | | | | | | Laboratory Duplicates | | | | | | | | Comment: | | | | | | | | Comment: | | | | | | | | Completeness | # Samples | # Analyses | Tot #
Analyses | Tot # Accep | t Analyses | % Complete | | Completeness = (Tot # Analyses / Tot # Accepted Analyses) x 100 | 6 | 1 | 6 | 6 | | 100 | | General Comments:
None | | - | | | | | | Check Applicable: [] Lab contactedCorrectiv [] Corrective actions receive [X] The data, as reported by [] The data, with qualifiers [] The data are unacceptable [] Other | ed and accept
the laborator
as described i | ed Dry, are accep | | l/Accepted: | | otable. | #### Chemical Analytical Data Evaluation Report #### SUMMARY OF QUALIFIED DATA | Target Compound | Sample(s) Affected | Qualifier | Reason for Qualification | | |-----------------|---------------------------------------|-----------|---------------------------------------|-------------| | None | | | | | | | | | | to the second | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | — | | | | | 10000 | | | |--|---------------|---|-------|--|--| | Narrative: | | | | | | | This data package was found to meet the requirements of the methods. The data are valid for use. | | | | | | | Thurs 7000 1/19/00 | | | | | | | Evaluato | r's Signature | · | Date | | | | | | | | | | 981001 January 30, 2001 Jeff Wilmoth CH2M HILL Constructors, Inc. 115 Perimeter Center Place, N.E. Suite 700 Atlanta, GA 30346-1278 Subject: Data Validation Services for the NAS Whiting Field, Milton, Florida. Remedial Action Contract, SoDiv; Contract No. N62467-98-D-0995. CTO #0011 - Site 15. Dear Mr. Wilmoth, Enclosed please find the data validation package for CTO #0011 - Site 15; NAS Whiting Field, Milton, Florida. A copy of the validated spreadsheet file in MS-Excel97 file format has been e-mailed to jwilmoth@ch2m.com. Three additional fields were added for the validated results, validated qualifiers, and qualifier codes. This report covers one sample deliver group (SDG) and includes data from laboratory project number CO-07543. Data validation was conducted by Mr. Chris Ohland. Mr. Ohland is a senior data validator. Please call me at (414) 475-5503 if you have any questions or need additional information. Sincerely, Christopher Ohland Senior Environmental Chemist Christyph M. ohl & Enclosures CMO/jo Edata\:013001LTR.doc ## **Data Validation Reference Package** ## **Acronyms and Abbreviations** CLP Contract Laboratory Program COC Chain-of-Custody %D Percent Difference DUP Duplicate ICP Inductively Coupled
Plasma IDL Instrument Detection Limit IS Internal Standard LCS Laboratory Control Sample MDL Method Detection Limit MS Matrix Spike MSD Matrix Spike Duplicate NFG National Functional Guidelines %REC Percent Recovery QA Quality Assurance QC Quality Control RL Reporting Limits RPD Relative Percent Difference RRF Relative Response Factor RSD Relative Standard Deviation SDG Sample Delivery Group # **Data Qualifier Reference Table** Final validated data were assigned qualifiers per USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (NFG). Table 1 presents all data qualifiers used in data validation for the NAS Whiting Field project. TABLE 1 EXAMPLE DATA QUALIFIER REFERENCE (NAS Whiting Field, Milton Florida, CTO#0011-Site 15) | Qualifier | Inorganics | |--------------------|--| | [none]
or [=] | The analyte was analyzed for, and detected at the reported concentration. The qualifier [none] was used on the hardcopy reports and the qualifier [=] was used on the electronic data deliverables | | U | The analyte was analyzed for, but was not detected above the reported sample reporting limit. For metals analyses, the reporting limit is the instrument detection limit (IDL). | # **Qualification Code Reference Table** Qualification codes explain why data qualifiers have been applied and identify possible limitations of data use. Table 2 presents all data qualifier codes used in data validation for the NAS Whiting Field project. TABLE 2 EXAMPLE DATA QUALIFIER CODE REFERENCE (NAS Whiting Field, Milton Florida, CTO#0011-Site 15) | Qualifier | Organics | Inorganics | |-----------|--|--| | В | Parameter detected in the associated laboratory method or preparation blank. Presumed contamination. | Parameter detected in the associated laboratory method or preparation blank. Presumed contamination. | # **Data Validation Report** #### Introduction The Navy issued a task order to CH2M HILL Constructors, Inc. (CCI) to conduct sampling activities at (NAS Whiting Field, located in Milton, Florida under Navy Remedial Action Contract, SoDiv; Contract No. N62467-98-D-0995. CTO #0011 - Site 15. This report describes the data validation services provided by E-Data, Inc., in support of CCI project number 151168. CCI collected soil samples at Whiting Field during a single field events on July 24, 2000. Samples were taken at 2 locations. Field quality control samples including one equipment rinsate blank sample was also submitted to the laboratory. A summary of the samples collected is shown in Table 3. A summary of the required analyses is shown in Table 4. Samples were submitted to Sevren Trent Laboratories located in Pensacola, Florida. Laboratory data were validated using CCI-approved checklist based on the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. A copy of the field Chain-of-custody form and validated laboratory reports with qualifiers and qualifier codes are provided in Appendix A. Appendix B contains copies of the completed checklists. The final validated-laboratory reports were compared to the electronic data. Table C-1 (Appendix C) summarizes the final 3 sample results that were checked. The database contains 3 results from field and field quality control samples. This report covers a single sample deliver group (SDG)) and includes data from laboratory project numbers CO-07543. The SDG is 07543. Mr. Chris Ohland/E-Data, a senior data validator, conducted data validation. TABLE 3 Sample Cross-Reference Summary (NAS Whiting Field, Miltion Florida, CTO#0011-Site 15) | Lab ID No. | Field Sample ID No. | QC Type | Sampled | Received | |------------|-----------------------|---------|------------------|----------| | C007543*1 | 20000724-SITE 15-B-01 | Normal | <i>_</i> 7/24/00 | 7/25/00 | | C007543*2 | 20000724-SITE 15-B-02 | Normal | 7/24/00 | 7/25/00 | 3 TABLE 4 Required Analyses Summary (NAS Whiting Field, Miltion Florida, CTO#0011) | Lab ID No. | Field Sample ID No. | SW 846
6010A | |------------|-----------------------|-----------------| | C007543*1 | 20000724-SITE 15-B-01 | 1 | | C007543*2 | 20000724-SITE 15-B-02 | 1 | ## **Data Validation Findings Summary** This section presents a summary of the data validation findings of the data reviewer. #### **General Comments** No general comments were noted in the review. #### Inorganic Analysis by ICP The continuing calibration blank contained arsenic. An action level was calculated using the 5X rule. Values reported in samples CO-07543*1 and CO-07543*2 were qualified as non-detected and flagged "U." ## **Technical Validity and Usability** The analytical performance of this data set is very strong. The analytical results meet the data quality objectives defined by the applicable method and NFG, except as noted in the data validation findings. # **Summary of Qualified Data** A summary of the data qualified during the data validation exercise is summarized in the following table. MILICTO0011-SITE15_NARRATIVE.DOC Table 5 Summary of Data Validation Qualified Data (NAS Whiting Field, Milton, Florida - CTO #0011 - Site 15) | | | | | Original Lab Data | Validati | on Upda | ntes | |-----------|-----------------------|----------|-----------|-------------------|----------|---------|------| | Lab ID | Sample ID | Fraction | Parameter | Result Qual. | Result | Qual | Code | | C007543*1 | 20000724-SITE 15-B-01 | Metal | Arsenic | 1.4= | 1.4 U | | В | | C007543*2 | 20000724-SITE 15-B-02 | Metal | Arsenic | 1.3 = | 1.3 U | ı | В | #### **Qualifier Codes:** B Parameter detected in the associated laboratory method or preparation blank. Presumed contamination. #### **METALS** #### -1-INORGANIC ANALYSIS DATA PACKAGE | Client: N/A | \ | | | SDG | No.: <u>7543</u> | | | Meth | od Type: <u>SW 846</u> | |-------------|-------------|---------------|-------------|------------|------------------|----------|-----------|------------------|------------------------| | Sample I | D: C007543- | -1 | | | | Clien | ID: 20000 | 724-SITE 15-B-01 | | | Contract: | N/A | | Lab (| Code: | STL PEN | <u> </u> | Case No.: | N/A | SAS No.: N/A | | Matrix: | SOLL | Date I | Receive d: | 7/25/00 | | Level | : | | | | % Solids: | 97.5 | | | ment |) Ex | aD
De | | | | | CAS No. | Analyte | Concentration | Units | cv | Qual | M | DL | Instrument ID | Analytical
Run | | | senic | 1.4 | mg/Kg | u | β | P | 0.29 | TJA61E Trace | TJULY27A | | Color Befo | re; | | Clar | ity Before | o <u>:</u> | | | Texture: | | | Color Afte | r: | | Clar | ity After: | L | | | Artifacts: | | | Comments: | | | | | | | | | | cmo 01/25/01 #### **METALS** #### - 1 -INORGANIC ANALYSIS DATA PACKAGE | Client: N/A | SDC | 7543 | Meth | od Type: <u>SW 846</u> | |-----------------------------|------------------------|-------------------|-------------------|------------------------| | Sample ID: C007543-2 | | Client ID: 2000 | 0724-SITE 15-B-02 | | | Contract: N/A | Lab Code: | STL PEN Case No.: | : <u>N/A</u> | SAS No.: N/A | | Matrix: SOIL % Solids: 97.1 | Date Received: 7/25/00 | Level: | | | | CAS No. Analyte Co | ncentration Units C | Qual M DL | Instrument ID | Analytical
Run | | 140-38-2 Arsenic | 1.3 mg/Kg <i>U</i> | B P 0.28 | TJA61E Trace | TJULY27A | | Color Before: | • | re: | | | | Comments: | | | **** | | | | | | | | mo 01/25/01 | | | 113 Audientin Conter Mon, Sude 700 | | | | | | i | 2 | | * | | Š | | | | · COC NUMBER | PATR: | | |---------------|--|---|-----------------------|--------------------------------|--|--------------------------|---------------------------------------|--------------|---|---------|----------|-------------|---------|-----------|--|------------|---|-------------|--------------------------| | | CHZMHILL | | 8 | COSSUL CHAIN-OF-CUSTODY RECORD | ÇHA | Ż | | ゔ | | 3 | — | | בֿ
כ | 3 | | | 151168-000724-01 | 0724-0 | = | | PROJECT NAME: | 'NAME: | PROJECT NUMBER: | 282 | AN AND COM | EQ. | | 74 | X AND S | FAX AND MAIL BIPOR | 17600 | ë | | | RECIPIER | * RECIPIERT) (Address, Tel No., and Fex No.) | No. of | er No): | | | | NA8 W | NAS White Field | 191161 | Severa Tree | Treat Labo | nt Laboratories, Carelyan | E E | <u></u> | et Denni | Seett Dunber, CHZM HR, Constructors, Inc. | M HE | Const | uctors, | | OSC, PW | D, NAS WIL | | OSC, PWB, NAS Whiting Field, 7131 USB Wasp St. Milliam, Fl.
23670 Finan-1983,1359 Text.—583,5950 | 76. William | E, | | TOTAL | PROJECT PHANCETENTANCE | CTO OR DO NUMBER: | 3 | LAB PO NUMBER | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | X AND Y | II PAX AND MAIL REPORTMEND TO:
RECEPTOR 1 Of sea and CommitS | TIVEDD | ë | | | RECUMEN | "RECIPERATE OAMBOOK, Tel No., and Fox No.) | No. end | For No.); | | | | Ste 15 | | CTO-0011 | 7151 | | | | 1 | Schwi | Lina Schwan, CHIM BIR, Constructors, Inc. | A HIN, | Comments | ectors, I | | 115 Perle | rimatar Canter Place, NE, Suite 7
-770-604-9183 Face-770-604-9183 | Fare-770 | 118 Ferimeter Center Place, NE, Sade 708, Adlanta, Ga.
30346
Phone=770-004-9183 Far=770.004.9181 | eta, Ge. V | 3 | | PROJEC | PROJECT CONTACT | PROECT TELNOAND FAX NO. | 3 | LAB TELNO AND PAX NO | S S S | | | XAMD | PAX AND MAIL REPORTS/EDD TO: | CTS/EDD | ë | | | RECIPERA | RECTIFIENT 3 (Address, Tel No., and Fax No.); | iNo, and P | Fax No.): | | | | Beatt Due | bar er Torry | 964.963.1309(Phone)
866.963.5996 (Pax) | 898.474.160
(Fex.) | 4.1661 (Plea | 81 (Phone) 866.474.4789 | | 13 | O | 10
10
10 | | P. C. | freeton | ä | The Park | edmeter Center Place, NE, Sulle 7
-778-684-9183 Fax-778-684.9996 | Fare-77 | netzer Center Plann, NE, Sulle 768, Adlanta, Ga. 36946
70-684-9183 Fart=778-684.9996 | nta, Ga. 3 | 346 | | | | | | | | | ┞ | | 2 ANALVERS REQUEED (include Method No. | S NEGU | RED (Inc | de Marte | N. | _ | | | | | | | 3
EL
2 | II SAAPLE IDENTIFIER | 3 AAVFLE DESCUPTION/LOCATION | XISTAN ^{(K} | S DATE | TIME
COLLECTED | TVI. ₉₀ 20(4) | (sych wheels) | (check) 6000 | | | | | | | * SAMPLE TYPE | 1 | P COALAIDHTA
SCREENING READHOR | | "LAB ID
(fer labs um) | | - | 20000724-Site 15-EB-61 | Equipment blank | ₹ | 97/24/00 | 14:40 | ၁ | 7 7 | × | | | | | | | 8 | | Present @ 4C & HINOS | 4 | M | | " | 29000724-Sto 15-B-61 | Excevetion bottom | 8 | 07/24/80 | 16:18 | ာ | 7 | × | | | | | | | \$ | | Preserved @ 4C | 7 | - | | - | 2000774-Sits 15-B-62 | Excavation bottom | 20 | 01/24/80 | 16:18 | υ | , | × | | | | | | | S. S. | | Preserved @ &C | W | 7 | | • | | | | | | | | | | | | | | | | | | 7.5 | - | | , | | | | | | | | | | | | _ | | 1 | _ | \dashv | | | T | | v | | | | | | | | | | 1 | - | - | | | _ | \dashv | | _ | | | · | | - | | | | | | | | | | _ | | | _ | + | | _ | | | | | | | | | | - | | | 7 | - | | | | | \dashv | | \dashv | | | ٩ | | | | | | | - | | | 1 | \dashv | - | | | | + | | \dashv | | | 2 | | | | | | | | - | | | ᅦ | \dashv | | | | | | | T | | 38 | *AMPLERS) AND COMPANY: Game mind
Scatt Dambar, CH2M Hill Countractors, Inc. | gies
Gructory, Inc. | Scott Due | MAND SEED | NYD REPTING MANDER:
bar, CHEZM HIB Constructors, Inc. | patruct | F. lie | | | | | | _ | 141.000 | 3.0 | | 3.0°C - CC+ L | 7 | | | | | | | | | | ı | ı | | | Ī | | _ | | | | | L | TANG. | | | | " RELINCTORNED BY | Ц | DATE | | E C | | K | j | | | RECTIVED BY | Ě | | | + | DAIB | H | 3 | | Sett | Sett Dasher BA | Camb | 口 | 7-35-00 | | 5491 | 1. 1 | 7 | 2 | 64 | 1 | 1 | 8 | EUS | ELS PERMY | | 00157/6 | 7 | 379 | | | <u>which Manne and Mynakana:</u> | | \perp | | | <u>L</u> | 十 | | | | | | | | | | | H | П | | Ĕ | Ideas Was and Squades: | | \coprod | | | Ш | Ħ | Ž, | Named Names and Suppose | l i | | | | | | \dagger | | + | T | | | | | | | | | | | | | | | | | | | | - | | | | | Disclination: [Original - Laboratory (To be returned with Analysical Report). [] Capy 1 - Paulost Fills, [] Copy 1 - PMO | | cry (To be return | od with Amelyo | September 1 | Ë | 1 | A Mile I | Ž. | S | | | | | | Form CCB01, Rev 86/00 | Re- 88/00 | | # QUALITY ASSURANCE REVIEW DATA VALIDATION CHECKLIST Inorganic (Metals and Cyanide) Data | Project File: | Sampling Date: 7/24/00 | | |---|--|-------| | Laboratory: SIL-Pensacola | Receipt Date: 7/25/00 | | | SDG Number: <u>60-07543</u> | Matrix: Water Soil/Sediment | Air | | Sample Identification numbers: | | | | <u>07543-1</u>
 | | | | | | | | The general criteria used to determine the | data performance and quality assurance were based on: | | | Analytical Data (HAZWRAP DOE/) USEPA Contract Laboratory Progra Data Review (EPA-540/R-94/013, I USEPA SW846 (SW-846) Methods USEPA Drinking Water (DW) Methods | am (CLP) National Laboratory Functional Guidelines for Inor | | | continuing calibrations, laboratory and | ed: holding time, sample preservation, ICP MS tunes, initial field blank results, laboratory and field duplicate results matrix spike (MS) results, laboratory control sample (LCS) results results, and detection limits. | , ICP | | Reviewed by: Chris Ohlan | Date: 61/25/9 | | | QA Concurrence by: | Date: | | | Validation Summary | |--| | No deficiencies were found, except arsenie was detected in the continuing calibration blank @ 0.3014/1cg Action levels were calculated using the 5× rule and results for 07543-1,-2 were qualified as non-detected and flagged it. | | arsenic was detected in the continuing calibrations | | blank @ 0.301 1/1/cg Action levels were calculated | | using the 5x rule and results for 07543-1, -2 | | were qualified as non-detected and flagged it." | #### Qualifiers: U - Not detected. J - Approximate data due to other quality control criteria. R - Unusable. UJ - Not detected, limit of detection approximate. #### I. SAMPLE PRESERVATION AND HOLDING TIME | Yes No | All samples | were handled and
were analyzed wi | _ | | nents. | | |-----------------|----------------|--------------------------------------|---------------------------------------|--------------------|------------------|-------------------| | The following d | leficiencies w | ere found: | | | | | | Sample ID | Matrix | Preservation | Collection
Date | Extraction
Date | Analysis
Date | Qualifier
Flag | · · · · · · · · · · · · · · · · · · · | - | | | | | | | | | | Remarks: | | | | | | | | | | | | | | | E*Data, Inc. INORG - Validation Checklist May 2000 #### **INITIAL CALIBRATION** II. Yes No Inductively Coupled Plasma (ICP) Analysis: A. Yes The instrument was standardized with at least a blank and one traceable standard. The initial calibration verification (ICV) solutions were immediately analyzed after each instrument was calibrated. omo Analyses for As, Pb, Se and TI were performed by ICP. ☐ Yes Graphite Furnace Atomic Absorption (GFAA) Analysis: B. No Yes Calibration standards were prepared daily, or each time an analysis is to be made. A blank and at least three traceable calibration standards were used in establishing each П analytical curve, with the blank being analyzed first. The concentration for one of the calibration standards was at the Contract Required Detection Limit (CRDL). The ICV solutions were immediately analyzed after each instrument was calibrated. The calibration curves have a correlation coefficient of ≥ П ☐ Yes Cold Vapor (CV) Mercury Analysis: C. Yes No The instrument was standardized with at least a blank and _____ traceable standards. П The concentration for one of the calibration standards was at the CRDL. П The ICV solutions were immediately analyzed after each instrument was calibrated. The calibration curves have a correlation coefficient of ≥ _____. П Yes No Cyanide Analysis: D. Yes No The instrument was standardized with a blank and at least _____ traceable standards. The concentration for one of the calibration standards was at the CRDL. calibration standard(s) was distilled and compared to similar values on the П curve to ensure that the distillation technique is reliable. The distilled standard(s) agreed within ±____% of the undistilled standard(s). The ICV standard solution was distilled with each batch of samples analyzed. (An ICV distilled with a particular set of samples must be analyzed only with that sample set.) The ICV solutions were immediately analyzed after each instrument was calibrated. The calibration curves have a correlation coefficient of ≥ _____. \Box | E. | ICP M | lass Spectromet | ry (MS) Analysis: | | ☐ Yes | No | | | | | | |-------|---|--
--|--|------------------|---------------------|--|--|--|--|--| | Yes | No | MS Tuning | | | | | | | | | | | | | Mass calibration and resolution checks in the mass regions of interest were conducted. | | | | | | | | | | | | | Mass calibration | on and resolution pa | arameters were met prio | r to any samp | le analysis. | | | | | | | | | ICP MS Initia | l Calibration: | | | | | | | | | | Yes | No | The instrumen | | sing the calibration bl | ank and at le | east traceable | | | | | | | | | The instrumen | t was flushed with | h the rinse blank betw
ns for both calibration a | | | | | | | | | | | The ICV was p | repared in the sam | e acid matrix as the cali | bration standa | ırds. | | | | | | | | | range at a con-
standard is de | centration other the | andent traceable standar
an that used for instrum
al composed of the anal
attrument calibration.) | nent calibration | on. (An independent | | | | | | | | | The ICV solution | on was analyzed in | nmediately after the cali | bration was e | stablished. | | | | | | | | | The results of the expected va | | nd the instrument check | standard wer | e within ±% of | | | | | | | F. | LINE | ARITY | | | | | | | | | | | Multi | ipoint cali | brations having | a correlation coeffic | cient (r) of less than | are lis | ted below: | | | | | | |] | Element | nt r Calibration Affected Samples Date/Time | | | | | | | | | | | | | | and the state of t | ļ | | | | | ., | Rema | arks: | | | | | | | | | | | | - | · • • • • • • • • • • • • • • • • • • • | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | W-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | · · · · · · · · · · · · · · · · · · · | #### III. CONTINUING CALIBRATION VERIFICATION | The continuing run and after th | | | | (CCV) standa | ard was trac | ceable ar | nd analyzed at the beginning | ig of the | | | | |--|------------------------|-----------------|---------------|--------------|------------------------|---------------------------------------|--|-----------|--|--|--| | Yes No | ic iast alla | iyucai S | Yes | No | | Yes | No | | | | | | @ _ 10 | CP Analys
yanide An | | | ☐ GFAA | Analysis
S Analysis | | CV Mercury Analy | sis | | | | | The CCV stand | | | l at a fro | equency of _ | 10 % or e | very | ery hours during the analytical i | | | | | | Yes / No | ore neque | ш. | Yes No | | | | No | | | | | | ICP Analysis Cyanide Analysis | | | GFAA Analysis | | | Yes | CV Mercury Analy | sis | | | | | Recoveries for
Control Limits
Yes No | | | | | | | rol limits. Cyanide%. No | | | | | | | CP Analys
yanide An | is
alysis | | | Analysis
S Analysis | | CV Mercury Analy | sis | | | | | The following | calibration | n deficie | ncies w | ere found: | | | | | | | | | Calibration
Date | Instr
ID | ICV
/
CCV | A | Analyte | %R | | Affected Samples | Action | ļ | | | | | | | | | | | | | ļ | | | ····· | | | | | | | | | <u> </u> | ļ | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | and the second s | | | | | | | | ļ | <u> </u> | | | | | ļ | | | | | | | | <u> </u> | | | | | <u></u> | | | | | Remarks: | · | | | E*Data, Inc. INORG - Validation Checklist May 2000 | V. | CRI/C | RA ANA | ALYSIS | | | | | |--|-----------------|------------------------|------------------------------|--------------------------------|---------------------|----------------------|--| | A.
Yes | CRI IC | CP Analy | | | | | | | | | The CI minimum the ICV | m of | yzed at the
_ per 8 hour | beginni
r workin | ng and
g shift, | end of each sample analysis run, or at a
whichever is more frequent, but not before | | | | The CI | RI standard
ever is great | was analyze
er, for all ICF | d at 2x
analyse | CRDL, | or 2x the instrument detection limit (IDL) | | | | | _ | CRI were wit | | | imits. | | В. | CRA A | Analysis | for GFAA | and Cold Va | apor Hg | | | | The C | RA was | analyzed
Yes | No | | Yes | No | run, but not before the ICV. | | | | | _ | A Analysis | | | V Mercury Analysis | | The C | RA solu | tion was
Yes | prepared at
No | the CRDL or | r at the II Yes | DL, whi
No | chever is greater. | | | | | | A Analysis | | | V Mercury Analysis | | Recov | veries for | the CRA | were withi | n acceptance | limits (| GFAA: | %; Mercury%). | | ICCOV | 01105 101 | Yes | No | | Yes | No | | | | | | ☐ GFA | A Analysis | | | CV Mercury Analysis | | The fe | ollowing | deficienc | cies were for | and for the C | RI/CRA | analysi | s: | | | | | CRI | | | 0/ D | Affected Samples | | | oration
Date | Instr
ID | CRA | Analyt | e. | %R | Anecteu Samples | | | | | | | | | | | | | - | - | | | | | | | <u>. </u> | | | | | | <u></u> | | | Rem | arks: | _/ | <u></u> | | | | CD LODA | | | | | No Action | was taken to | qualify | data ba | ased on CRI/CRA recoveries. | E*Data, Inc. INORG - Validation Checklist May 2000 #### V. BLANKS | Yes No | | |--------------
---| | | Calibration and/or preparation blanks were analyzed for each matrix. | | 70 | Blanks were reported at the IDL for all non-detects. | | | The initial calibration blank (ICB) was analyzed after the analytical standards, but not before the ICV analysis. | | | A continuing calibration blank (CCB) was analyzed for every <u>LO</u> samples or every <u>LO</u> hours, whichever occurred more frequently. | | 0 | The CCB was analyzed at the beginning of the analytical run, and after the last CCV that was analyzed after the last analytical sample of the run. | | | For ICP MS analysis, three types of blanks were used: the calibration blank (for establishing the calibration curve), the preparation blank (to monitor for possible contamination resulting from sample preparation procedures) and the rinse blank (to flush the system between all samples and standards). | | | For ICP MS analysis, the results of all calibration blanks were less than 3x the IDL. | | | Negative blanks were reported. | | 1 1 1 | Field QC samples were associated with this SDG. | | | | Note: Negative blanks whose absolute values are > IDL must be carefully evaluated to determine their effect on the sample data. When the observed blank exceeds a negative CRDL, all non-detects should be considered unusable. Field QC associated with this SDG were: | Field
Blanks | Associated Samples | Field
Blanks | Associated Samples | |-----------------|--------------------|-----------------|--------------------| | 07543-3 | 075/3-1,-2 | | | | | | | | | Equipt
Blanks | Associated Samples | Equipt
Blanks | Associated Samples | |------------------|--------------------|------------------|--------------------| | | | | | | | | | | | | | | | Blank Worksheet | CCB12 | | | | | | | | | | | | |---------|----------------------|--|--|--|--|--|--|--|--|--|--| | CCB11 | | | | | | | | | | | | | CCB10 | | | | | | | | | | | | | ссво | | | | | | | | | | | | | CCB8 | | | | | | | | | | | | | CCB7 | | | | | | | | | | | | | CCB6 | | | | | | | | | | | | | ccB5 | | | | | | | | | | | | | CCB4 | | | | | | | | | | | | | CCB3 | | | | | | | | | | | | | CCB2 | | | | | | | | | | | | | CCB1 | | | | | | | | | | | | | ICB | | | | | | | | | | | | | Prep | | | | | | | | | | | | | Equipt | active to the second | | | | | | | | | | | | Field | | | | | | | | | | | | | Analyte | | | | | | | | | | | | (See page 11) 10 3*Data, Inc. NORG - Validation Checklist May 2000 #### **Action Level Summary** | Analyte | Field
Blank | Equipt
Blank | Prep
Blank | ICB | Highest
CCB | Action
Level | Affected Samples | Action
Taken | |---------|----------------|-----------------|---------------|-----|----------------|-----------------|------------------|-----------------| | Arsonz | ND | _ | No | DO | 0.301 | 1.5 | all | , | Remarks: | VI. IC | P INTER | FERENC | СЕ СНЕ | CK SAN | IPLE | | | | | | |-----------------------|-----------------------|---------------|------------------------------------|---------------------------------|------------------|---------------|----------------|-----------------|------------------|--| | Yes No | For l
samp
occu | ole analys | ysis, the
sis run of
frequen | interfere
or at a m
atly. | nce QC
inimum | samples
of | were ru | r 8 hour | working s | and end of each
shift, whichever
analyzed at the | | The following | begii
No d | nning of a | n analyt
es were f | ical run a
ound. | | | | | | nore frequent. | | The followi | True
Conc | Found
Conc | %R | | h | | ected
mples | | | Action | l be present. | | Element | Con | centratio | n detect | ed in the | ICS | Al Al | 7 - 1 - 1 | nt concen
Ca | tration in
Fe | the ICS Mg | | Estimate th | ne concent | tration pr | oduced | by the in | terfering | 78.791 | | | | List the samples | | affected by Affected | Affect | erences be | elow: | | | | | the ICS | | Estimated | | Sample | Eleme | nt Co | onc. | Aì | C | a | Fe | Mg | | Interference | | | | | | | | | | | | | | Remarks: | | | | | | | | | | | | VII. | LABO | RATORY CO | NTROL | SAMPLE A | ANALYSIS Matrix: Soil | |-------|---------------|---------------|---|-------------|---| | Yes | No | for aqueous L | coveries
CS results used as
ous LCS to
es were for | were within | trix. $559-94.5$ In the control limits of% (except for Sb and Ag) An aqueous LCS is not required for Hg. For cyanide, a sults fell within the control limits of $55.9-94.5$ | | La | CS ID | Element | % R | Action | Samples Affected | ····· | ,, | | | ļ | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | - | 1 | | | | | | | | | | Rema | nrks: | | 1 | | | | | | | | | | #### VIII. DUPLICATE SAMPLE ANALYSIS | Yes /No | | | | | | | | | | | | | |-----------|-------------------|---|------------------|----------|------------------|-----|--|--|--|--|--|--| | | | A laboratory sample/duplicate analysis was performed for every matrix in a batch, at a frequency of one matrix duplicate for every 10 samples. | | | | | | | | | | | | | Reported relate | Reported relative percent differences (RPDs) for laboratory sample/duplicate analysis were <% for water, (or <% for soil) when the original and duplicate values were ±5 x CRDL (or the reporting limit). | | | | | | | | | | | | | The control li | x CRDL (or the reporting limit). The control limit of \pm the CRDL was used for water (± 2 x the CRDL for soil) when either the sample or duplicate value was < 5 x CRDL. (In the case where only one result was above the 5 x CRDL level and the other was below, the \pm the CRDL criteria was applied.) | | | | | | | | | | | | | | e and duplicate v | | | | | | | | | | | | | For ICP MS | analysis, the con
00 x the IDL. | | | | | | | | | | | | | Field duplicat | e data were inclu | ded in this data | package. | | | | | | | | | | | Qualification | of field duplicate | data was atten | npted. | | | | | | | | | | Sample/Du | uplicate ID: | 0-07543- | 15 | Ma | trix: <u>301</u> | | | | | | | | | Field/Lab | oratory Precision | Evaluation Defi | ciency Worksh | eet: | | | | | | | | | | Element | CRDL | · · | + | | | | | | | | | | Remarks: | Yes No | Yes No Field QC samples were not used for MS analyses. Recoveries were within QC limits. No deficiencies were found. Matrix spike Sample ID: CO-07543-); found in SDG 07543; Matrix Social Company. The following deficiencies were found: | | | | | | | | | | | | | |----------|---|------------------------|-------------------------------------|----|--------|----------|--|--|--|--|--|--|--| | Element | Sample
Result
(SR) | Spike
Added
(SA) | Spiked
Sample
Result
(SSR) | %R | Action | Comments | | | | | | | | | | | • | V | Remarks: | | | | | | | | | | | | | | | Λ. | GKAI | HILLFU | RNACE AT | DMIC ABSURPTIC | JN (GFAA)/CYANIDE ANALYSIS QC | | | | | | | | | | |----------|---------------|-------------------|---|------------------------|---|--|--|--|--|--|--|--|--|--| | Yes | No | | | | | | | | | | | | | | | | | All GFA | A analyses fel | l within the calibrati | on range. | | | | | | | | | | | | | | All GFAA analyses were performed in duplicate
injections, except during full method of standard additions (MSA). | | | | | | | | | | | | | | | | No more than samples (injections) were performed between each consecutive CCV and blank analysis. | | | | | | | | | | | | | | | | The relative standard deviation (RSD) or coefficient of variation (CV) for duplicate sample injection concentrations greater than the CRDL was less than %. | | | | | | | | | | | | | | | For GFA outside t | For GFAA, ICP, and CN analysis, when the pre-distillation/pre-digestion spike recovery fell outside the control limits and the sample result did not exceed 4x the spike added, a post-digestion/post-distillation spike was performed for those elements that did not meet criteria. | | | | | | | | | | | | | | | _ | -digestion spil | / | at 2 x the CRDL (except for lead which must be | | | | | | | | | | | | | The spik | e percent reco | veries were within a | exceptance limits (%). | | | | | | | | | | | | | MSA wa | s performed o | n samples with spike | ed recoveries outside criteria. | | | | | | | | | | | | | The corre | elation coeffic | ients for all MSA an | alyses were greater than or equal to | | | | | | | | | | | | | No defic | iencies were fo | ound. | | | | | | | | | | | | The fo | ollowing | deficiencie | s were found | Mary 16 | | | | | | | | | | | | A. | Dupli | cate injecti | ions | 9,7 | | | | | | | | | | | | - | | | ions reported
riation (CV) > | _ | digestion spikes providing a repeated duplicate ed below: | | | | | | | | | | | | Samp | ole ID | Element | CV or %RSD | Action | | | | | | | | | | | | | / | | | | | | | | | | | | | | | | / | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | -/- | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | - | , | / | | | | | | | | | | | | | | <u> </u> | | / | <u> </u> | | | | | | | | | | | | | Rema | rks: | | | | | | | | | | | | | | | | 1 | Samp | ole ID | Eleme | ent %F | R | Action | | |-----------------------------------|------------|----------|--------------------|--------------|---------------|-----------------------|------------------| | | | | | | | | | | - | | | | | | | | | narks: | ١٢ - ١ | . 1 | | . 0 | - 6m = 117 | -11 A | Doubreno | | Meth | od of Sta | andard A | dditions: | spiked at th | e appropriate | -1A y goo | | | Meth
mples anal
it provided | od of Sta | andard A | dditions: | spiked at th | e appropriate | | s analyzed by MS | | Meth
mples anal
it provided | nod of Sta | andard A | dditions: were not | spiked at th | e appropriate | levels and/or samples | s analyzed by MS | | Meth | nod of Sta | andard A | dditions: were not | spiked at th | e appropriate | levels and/or samples | s analyzed by MS | | XI. | ICP | SERIAL DILUTION ANALYSIS | | | | | | | | | |--------|---------|--------------------------|---|----------|--------------------|----------|-----------------------------|-----|--|--| | Yes | N₀
□ | SDG,
(conce | At least one ICP serial dilution was performed on a sample of each matrix type, or for each SDG, whichever is more frequent, unless no samples had sufficiently high concentrations (concentration in the original sample was minimally a factor of 50 above the IDL) of any analytes for serial dilution analysis. | | | | | | | | | | | When dilution | When the concentration of an analyte in the original sample was sufficiently high, the serial dilution analysis (a 5-fold dilution) agreed within a% Difference of the original determination after the correction for dilution. | | | | | | | | | | | No de | ficiencies were | e found. | | | | | | | | Serial | Diluti | on Deficie | ency Worksh | eet: | Seria | Dilution | Sample ID: <u>CO-0754</u> 3 | -12 | | | | Elem | ent | IDL | 50 x IDL | Sample | Serial
Dilution | %D | Action | | | | | · | - | | | | | | | | | | | | ··· | 1 | | | | | | | | | Remar | ks: | #### XII. DILUTION TEST FOR ICP MS ANALYSIS | Yes | No | | | | | | | | |--------------|------|-----------------|--|-------------|---------------|------------|------------------|----------------------| | | | One dilu | tion test was in | ncluded for | each twenty | samples (c | or less) of each | h matrix in a batch. | | | | , | | | | | | the instrument and | | | | | | | | | | the concentration of | | | | | ent blank, an a
determination. | | a iiveioid (i | +4) anuuc | n agreed with | hin ±% of the | | | | _ | iencies were fo | | | | | | | The fol | llow | ing deficiencie | s were found: | | | | | | | | | Reporting | 100 x | Sample | Dilution | <u></u> | | | | Analy | te | Limit | Reporting
Limit | Conc. | Conc. | % D | Action | Comments | | | | | | / | | | | | | | | | | | ` . | | | | | | | | | | | • | | | | | | | .10/1 | 19 | | | | | | | | |) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | | <u></u> | Y | 1400 *** . | | | | / | | | | | | •, | | L | _/ | <i>y</i> | 1 | | 1 | | | | | Remar | ks: | | | | | | | | | | / | | | | | | | | | 7 | | | | | | | | | | / | • | | | <u></u> | | | | | | | | | | | | | | | | KIII. | INSTRUMENT | DETECTION LIMIT | ΓS | | | | | |--------|--------------------|--|----------------|-----------------------------------|-------------|--|--| | es | | Reported IDLs were determined quarterly, and were less than the CRDLs. CNO No deficiencies were found. | | | | | | | ist an | y analytes for whi | ch the reported IDL is r | not lower than | the required detection lev | vel (CRDL). | | | | | Element | Reported IDL | CRDL | Date of Last IDL
Determination | Action | Rema | arks: | | | | | | | | | | | | | | | | Table C-1 Summary of EDD Results Compared to Report of Analysis (NAS Whiting Field, Milton, Florida - CTO #0011 - Site 15) **Lab Sample ID:** C007543*1 C007543*2 C007543*3 **Field Sample ID:** 20000724- 20000724- SITE 15-B-01 SITE 15-B-02 SITE15-EB-01 Sample Collection Date: 8/6/00 8/24/00 8/24/00 Type of Sample: Regular Regular Eq. Blank Parameter Units Inorganic Metals πg/kg 1.4 U 1.3 U - Arsenic μg/L - - 3.0 # Data Quality Evaluation Report UST and Soil Removal Activities at Site 15 Naval Air Station Whiting Field Milton, Florida Soil samples were collected at NAS Whiting Field, Milton, Florida Site 15 in June and July 2000. Field quality control samples included equipment rinsate blanks, field duplicates and matrix spike/matrix spike duplicate pairs were submitted to Severn Trent Laboratories, Pensacola, FL. All confirmation and backfill sample analysis data was validated by E*Data, Inc. for compliance with the analytical method requirements. This also included a review of the data to assess the accuracy, precision, and completeness using CCI-approved checklist based on Environmental Protection Agency (EPA) *National Functional Guidelines for Organic Data Review* and *National Functional Guidelines for Inorganic Data Review*. Quality assurance/quality control (QA/QC) summary forms and data reports were reviewed. All Delineation sample analysis data was reviewed by Jeff Wilmoth at CCI/ATL. All associated QC,(LCS and MS/MSD), passed with acceptable recoveries and %RPD's. No contamination was present in the Method Blank. Several quality control exceptions resulted in qualification of the analytical data. These exceptions and qualifications are included in Appendix A. No data were rejected during the data review/validation process. The project objectives and the data can be used in the project decision-making process as qualified by the data quality evaluation process. Jeff Wilmoth Lab Coordinator/Data Manager CCI/ATL # Appendix B Survey Data # **Survey Data** The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15801501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15 SO2701 . | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15803201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001
| 625505.69 | 1174921.37 | 102.60 | | 15 S O4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15804401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. BY: PARAMETER STATUTES. KENNETH R. WENGLER, FLA. REG. NO DATE OF SURVEY: JUNE 8 & 20, 2000 pare / Too. # **Survey Data** The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15 SO 2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15802901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15 SO 3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15804001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15\$04201 | 625481.06 | 1174871.58 | 102.10 | | 15\$04301 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. CERTIFICATION: I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 20/2000 # **Survey Data** The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15801501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15 SO40 01 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO43 01 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 20/2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15 SO300 1 | 625530.77 | 1174870.72 | 101.60 | | 15 SO 3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15803701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15 SO 4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO 4301 | 625480.52 | 1174896.50 | 102.60 | | 15 SO44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. CERTIFICATION: I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. RES NO. 3413 DATE OF SURVEY: JUNE 8 & 26, 2000 The following survey data are provided for Site 15, NAS Whiting Field: Vertical Datum is NAVD (North American Vertical Datum) 88. Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15802601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15803101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15803301 | 625530.52 | 1174946.05 | 103.20 | | 15803401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15804001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15 SO44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. DATE OF SURVEY: ILINE 8 & 20 2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15901501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625556.05 | 1174895.73 | 101.60 | | 15802801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15 SO 3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 |
625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15804001 | 625505.69 | 1174921.37 | 102.60 | | 15SO4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO43 01 | 625480.52 | 1174896.50 | 102.60 | | 1 5SO44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 20/2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | • | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15803701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15SO4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO43 01 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: **KENNETH** R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 28/2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15 SO2 701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15803101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15803401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15803701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15803901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15\$04101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO43 01 | 625480.52 | 1174896.50 | 102.60 | | 15 SO44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 6/28, 2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625558.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15802901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15804401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15802601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15803001 | 625530.77 | 1174870.72 | 101.60 | | 15803101 | 625530.49 | 1174895.63 | 101.50 | | 15803201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15\$03401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15 S O3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 20, 2000 DATE) The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 5SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 |
625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15803201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15 SO3 701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15 SO 4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15 SO44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER **3011 S.W. WILLISTON ROAD** GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. Janel R KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 3 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15901501 Sample Grid: | | | | | 15802601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15803001 | 625530.77 | 1174870.72 | 101.60 | | 15803101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15803501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15804501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER **3011 S.W. WILLISTON ROAD** GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. CERTIFICATION: I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15801501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15\$02701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15 S O3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15SO4101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15804501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. DATE OF SURVEY: JUNE 8 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15801501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15802801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15 SO30 01 | 625530.77 | 1174870.72 | 101.60 | | 15 SO 3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15 SO33 01 | 625530.52 | 1174946.05 | 103.20 | | 15 SO 3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15 SO 3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15SO4101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15904401 | 625480.24 | 1174921.29 | 104.30 | | 15 8 O4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. analle R les KENNETH R. WENGLER, FLA DATE OF SURVEY: JUNE 8/6 20, 2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation (feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|-----------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15901501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15802901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15SO4101 | 625505.39 | 1174946.17 | 104.00 | | 15804201 | 625481.06 | 1174871.58 | 102.10 | | 15 SO43 01 | 625480.52 | 1174896.50 | 102.60 | | 15 \$O44 01 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 8 & 20/ 2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North
Coordinate
(feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |-----------------------|-----------------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15SO1501 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15SO2701 | 625556.05 |
1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15802901 | 625555.46 | 1174945.49 | 102.90 | | 15SO3001 | 625530.77 | 1174870.72 | 101.60 | | 15SO3101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15804001 | 625505.69 | 1174921.37 | 102.60 | | 15804101 | 625505.39 | 1174946.17 | 104.00 | | 15904201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15SO4401 | 625480.24 | 1174921.29 | 104.30 | | 15804501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES. DATE OF SURVEY: JUNE 8/6/20, 2000 The following survey data are provided for Site 15, NAS Whiting Field: Note: Horizontal Datum is NAD (North American Datum) 83 (1990) SPC FL. N., US Survey FT. Vertical Datum is NAVD (North American Vertical Datum) 88. | Description | North Coordinate (feet NAD) | East
Coordinate
(feet NAD) | Elevation
(feet NAVD) | |--|-----------------------------|----------------------------------|--------------------------| | 15SO1501 | 625518.33 | 1174908.48 | 102.30 | | 15 9 01 5 01 Sample Grid: | | | | | 15SO2601 | 625556.01 | 1174870.76 | 99.80 | | 15802701 | 625556.05 | 1174895.73 | 101.60 | | 15SO2801 | 625555.67 | 1174920.69 | 102.00 | | 15SO2901 | 625555.46 | 1174945.49 | 102.90 | | 15 SO300 1 | 625530.77 | 1174870.72 | 101.60 | | 15803101 | 625530.49 | 1174895.63 | 101.50 | | 15SO3201 | 625530.91 | 1174920.91 | 102.10 | | 15SO3301 | 625530.52 | 1174946.05 | 103.20 | | 15SO3401 | 625523.00 | 1174903.44 | 102.10 | | 15SO3501 | 625523.07 | 1174913.35 | 102.10 | | 15SO3601 | 625513.11 | 1174913.40 | 102.20 | | 15SO3701 | 625513.64 | 1174903.40 | 102.30 | | 15SO3801 | 625506.00 | 1174871.00 | 101.10 | | 15SO3901 | 625505.18 | 1174895.84 | 102.10 | | 15SO4001 | 625505.69 | 1174921.37 | 102.60 | | 15 SO 4101 | 625505.39 | 1174946.17 | 104.00 | | 15SO4201 | 625481.06 | 1174871.58 | 102.10 | | 15SO4301 | 625480.52 | 1174896.50 | 102.60 | | 15 SO 4401 | 625480.24 | 1174921.29 | 104.30 | | 15SO4501 | 625480.35 | 1174946.08 | 104.30 | PREPARED BY: KENNETH R. WENGLER 3011 S.W. WILLISTON ROAD GAINESVILLE, FL 32608-3928 (352) 335-7991 NOT VALID UNLESS SIGNED AND SEALED WITH EMBOSSED STAMP. **CERTIFICATION:** I HEREBY CERTIFY THAT THIS IS AN ACCURATE REPRESENTATION OF A FIELD SURVEY MADE UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS IN CHAPTER 61G17, FLORIDA ADMINISTRATIVE CODE, PURSUANT TO SECTION 472.027, FLORIDA STATUTES KENNETH R. WENGLER, FLA. REG. NO. 3413 DATE OF SURVEY: JUNE 20, 2000 # **Appendix C Waste Disposal Information** - Waste Disposal Summary - Manifests - Weight Tickets Certificates of Disposal/Destruction | GENER | TOR WA | STE PROFIL | E SHEET | | Waste Profile # | |--|--|---|--|--
---| | Requested Disposal Facility: | Times | MANDA | · | | | | Requested Disposal I will-y. | | Waste Company | _ | · 17-11% | | | | | • • | TO WIT I | at UC | 17 10 00 | | I. GENERATOR INFORM | MATION | | | | Date: 7-14-00 | | Senerator Name: NAS W | HITING | FIELD | | | 1 0 10 | | Generator Site Address: 7/5/ | U55 | WASP 57 | - NAS | WHITING | FIELD PWD | | City: MILTON | | County: SANTA | ROSA | State: FL | Zip. 32570 | | Generator State ID No: FL 217 | 0 232 | 44 | | SIC Code No | | | Generator Mailing Address (if differ | | | | | | | City: | | County: | | State: | Zip: | | Generator Contact Name: 201 | 1 50 | 4BLER | | | | | Phone Number 800 - 623- | | | 1 | C- 1 | / 12- 7/5//5 | | hone Number 000 - 625 | 7181 Ex | T.40 | Fax Number | 850-0 | 623-7575 | | none Number 000 - 623 | 7181 Ex | T. 40 | Fax Number | 850-0 | <i>6.</i> 0 | | : | | | Fax Number | 850-0 | 60.C | | II. TRANSPORTER INFO | RMATIO | | Fax Number | 850-6 | | | II. TRANSPORTER INFO | ORMATIO | N | Fax Number | 850-7 | | | II. TRANSPORTER INFO | D: A | n
Street | | | | | Transporter Name: 5 W Transporter Address: 3036 | DIAL | N
Street
County: Muhai | | State: AL | Zip. 36612 | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 City: Mobile | DIAL | N
Street
County: Muhai |) E | State: A | zip: 36612 | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 303(e) City: Mobile | DIAL | N
Street
County: Muhai |) E | State: A | | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 Tity: Mobile Transporter Contact Name: Address | DIAL | N
Street
County: Muhai |) E | State: A | zip: 36612 | | TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 303(e) Tity: 15 Transporter Contact Name: Address Thome Number: 334-330-10 | DIAL
DIAL | N
Street
County: Mubai
Am S
Fax Number: 334 |) E | State: A | zip: 36612 | | TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 Transporter Contact Name: Address Thone Number: 334-330-10 | D: AI | N Street County: Muta; Am 5 Fax Number: 334 ON | 1E
1-330-10 | State: AL | zip: 36612 | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 303(e Tity: 17 Transporter Contact Name: Address Address: Address Transporter Address: Address Transporter Address: Address Transporter Address: Address Transporter Contact Name: Nam | DIAL
DIAL
DIAL
DIAL
DIAL
DIAL
DIAL
DIAL | N Street County: Muhai Ams Fax Number: 334 ON C /MPA | 1=
1-330-10 | State: A | zip: 36612 | | TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 Transporter Contact Name: Address Contac | DIAL
DIAL
DIAL
DIAL
DORMATIONS
CORMATIONS | STREET County: Moba; Am 5 Fax Number: 334 ON C IMPA TIME CL | 1=330-13
CTED
EANUP. | State: AL State 1 | zip: 36612
Fransportation #: FLO 00 | | TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 303(e Tity: 17 Transporter Contact Name: Address Thone Number: 334-330-10 Thone Number: 334-330-10 Thore of Waste: Address Transporter Contact Name: Address Thore Number: 34-330-10 Thore Number: 34-330-10 Thore of Waste: Address Type of waste: INDUS | ORMATION AND AND AND AND AND AND AND AND AND AN | N STREET County: Mobil Am S Fax Number: 334 ON C /MPA TIME CL CESS WASTE OF | 1=
1-330-10
CTED
6ANUP. | State: AL State: T Solution Solut | zip: 36612
Fransportation #: FLO 00 | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 Transporter Contact Name: Address Address: Address Transporter Contact Name: Tran | DRMATIONS AND | N Street County: Muha; Am S Fax Number: 334 ON C /MPA TIME CL CESS WASTE OF | CTED
EANUL. | State: AL State: T State: T ON CONTROL OTHER: | zip: 36612
Fransportation #: FLO 00 | | Transporter Name: 5 W Transporter Address: 303(e Tity: 17 Transporter Contact Name: Address Thone Number: 334-330-10 Those of Waste: Address Transporter Contact Name: Address Those Number: 334-330-10 Those of Waste: Address Type of waste: INDUS Thysical State: SOLID Method of Shipment. BULK | ORMATION OR ALL PROCES SEMI-SCOPE TRIAL PROCESSEMI-SCOPE PROCE | STREET County: Moba; Am 5 Fax Number: 334 ON C /MPA TIME CL CESS WASTE OF DLID POWDER BAGGED OF | CTED EANUP. FOLLUTI LIQUID THER / EXPL | State: AL State: T State | zip: 36612 Fransportation #: FLO 00 WASTE | | II. TRANSPORTER INFO Transporter Name: 5 W Transporter Address: 3036 Transporter Contact Name: Address Address: Address Transporter Contact Name: Tran | CORMATION OF SEMI-SON DRUM TYARDS: | STREET County: Moto; Am S Fax Number: 334 ON C /M P A TIME CL CESS WASTE OF DLID POWDER BAGGED OT TON | FOLLUTI
LIQUID
THER / EXPL | State: AL State: AL State 1 State 1 ON CONTROL 1 OTHER: OTHER: | Zip: 36612
Fransportation #: FLO DO | Is the representative sample collected to prepare this profile and laboratory analysis, collected in accordance with U.S. EPA § 40 CFR 261.20(c) guidelines or equivalent rules? Sample Date: 6/13/00, 12/09/95 Circle one: COMPOSITE SAMPLE GRAB SAMPLE Sampler's Employer: CH2M H/LL (6/13/00) Sampler's Name (printed): STAN ELLEN Signature: | | | | Was | te Profile # | | | |--|---|--|--|--|-----------------|---------------------------------| | v. PHYSICAL C | CHARACTERISTI | CS OF WASTE | | | | | | | THARACTERISTIC C | | | % BY | WEIGHT (131 | nge) | | ^ - | | | | (| 70/0 | | | 1 | | | | | 25 70 | | | | | | | | 4507. | <u>.</u> | | 3. DEBRI | 5 | | | | | | | Color | Odor (describe): | Free Liquids: | % Solids: | pH: | Flash
Point: | Phenol | | CRAY - | 0.0 | YES OF NO | 100% | NA | | NA | | BAZWN | 0,21 | Content | _% | | >300°F | ppm | | | Attach Laboratory | Analytical Report (an
Required Parameters | d or Material Safe
Provided for this l | ty Data Sheet)
Profile | | | | Does this waste or gener | | egulated concentrations | of the following | Pesticides | | | | and/or Herbicides: Chlor
Toxophene, 2, 4-D, 2, 4, | dane, Endrin, Heptach
5TP Silvex as define | ed in § 40 CFR 261.33 | ? | ,,,,,,, | YES | or NO | | Does this waste or gener
Hydrogen Sulfide or Hyd | rating process cause it t
drogen Cyanide as defi | to exceed OSHA exposition in § 40 CTR 261.2 | ure limits from hig
13? | | YES | or NO | | Does this waste contain :
\$ 40 CFR Part 761? | regulated concentration | ns of Polychlorinated B | iphenyls (PCBs) a | | YES | or NO | | Does this waste contain 261.31, 261.32, 261.33. | including RCRA F-Lis | reg 20theurs; | | | YES | or (NO) | | Does this waste contain
TCCD), or any other did | regulated concentration in \$ 40 | ns of 2, 3, 7, 8 -Tetrach
CRF 261.31? | lorodibenzodioxin | (2, 3, 7, 8 - | | or NO | | Is this a regulated Toxic | | | egulations? | | | or 🔞 | | Is this a regulated Radio | | | | | | or (<u>100</u> | | Is this a regulated Medic | | | | tions? | | or NO | | Is this waste generated a | nt a Federal Superfund | Clean Up Site? | | | YES | or (NO | | VI. GENERATO | R CERTIFICATIO | <u>N</u> | | | | | | I hereby certify that to the waste material being office company will deliver for medical or infectious was to fully indemnify this discontinuous and AUTHORIZED REPRE | ered for disposal. I fur or disposal or attempt the liste, or any other waste isposal facility against space. | ther certify that by utilion deliver for disposal in material this facility is any damages resulting | izing this profile, it
any waste which it
torohibited from a | s classified as to coepting by law
tion being inaccounter the company of comp | oxic waste, ha | izardous was
y hereby agree. | | AUTHORIZED REPRE | SENTATIVE SIGNAT | URE | | DATE | | - | | VII. <u>ALLIED WA</u> | ASTE DECISION | | | | | | | Appro- | ved | Rejected | | Expiration | n: | | | | | | | | | | | Name, Title | | Signature | | | Date | | ## GENERATOR WASTE PROFILE SHEET #### INSTRUCTIONS FOR THE COMPLETION OF GENERATOR WASTE PROFILE SHEET #### **PURPOSE** The Generator Waste Profile Sheet is to be completed to properly identify and characterize the type of waste that is requested for acceptance. All information provided and certified by the generator of the waste identified by the Waste Profile Sheet is true, correct, and accurate. This form is to be used when applying for acceptance approval of a new waste stream of the renewal of an existing waste stream. ## WASTE PROFILE SHEET INFORMATION Waste Profile Number: Leave blank, Company tracking number will be issued by the Compliance & Landfill Development Department of Allied Waste. Disposal Facility: Enter the name of the proposed landfill facility for the ultimate disposal of the non-hazardous solid waste stream. #### 1. GENERATOR INFORMATION Generator Name and Address: Enter the required information including the name, address, telephone number of the company generating the waste stream for disposal. If the address to where correspondence is to be sent is different from the site address, complete the mailing address, otherwise, type "SAME". Also enter the Generator's Contact Person's Name and telephone number. Generator State ID Number: Applies only if State Agency issues ID Numbers (i.e., Illinois EPA has a ten digit code assigned to each generator of special waste). If the State Agency does not issue a number enter "n/a". SIC Code Number: Each industry class is assigned a four-digit code called a Standard Industrial Classification Code. The classification is assigned to the process which generates a specific product. #### II. TRANSPORTATION INFORMATION Transporter: Enter general information of the waste hauler who is to transport the waste. #### III. WASTE STREAM INFORMATION Waste Name: Provide the common name of the major component or substance that most accurately describes the waste. Process Description: Provide a description of the process or operation which generates the waste. Pollution Control Waste or Industrial Process Waste: Check the one category which applies to the waste stream. Pollution Control Waste means any waste generated as a direct or indirect result of the removal of contaminants from the air, water, or land, which pose a present or potential threat to human health or to the environment or with the inherent properties which make the disposal of such waste in a landfill difficult to manage by normal means. "Pollution Control Waste" includes, but is not limited to, water and wastewater treatment plant sludge, baghouse dusts, landfill wastes, scrubber sludges, chemical spill cleaning. Industrial Process Waste means any waste generated as a direct or indirect result of the manufacturer of the product or the performance of a service, which would pose a present or potential threat to human health or to the environment or with inherent properties which make the disposal of such waste in a landfill difficult to manage by normal means. "Industrial Process Waste" includes, but is not limited to, spent pickling liquors, cutting oils, chemical catalyst, distillation bottoms, etching acids, equipment cleaning, paint sludge, incinerator ashes (including but not limited to ash resulting from the incineration of potentially infectious medical waste), core sands, metallic dust sweepings, asbestos dust, and off-specification, contaminated or recalled wholesale or retail products. Specifically excluded are uncontaminated packaging material, uncontaminated machinery components, general household waste, landscape waste, and construction and demolition debris. Physical State: Circle one of the choices listed. Give the most accurate phase of the waste. Method of Shipment: Circle one of the choices listed. Describe the planned method of transportation to the disposal site. Estimated Annual Volume: List the estimated annual volume in cubic yards or tons. If other, explain (i.e., drums). Frequency: Circle one of the choices listed, Approximately how often the disposal of the waste is to occur. Special Handling Instructions: Indicate any specific instructions. # NAS Whiting Field/Public Works Department 7151 USS Wasp Street Milton, FI 3257-6159 850-623-7181 Ext. 40 Fax 850-623-7515 E-Mail ron,stabler@smtp.cnet navy.mil July 27, 2000 Mr. Tony Gomillion Director of Solid Waste SRC Department of Public Works 1095 Old Bagdad Highway Milton, FL 32570 Dear Mr. Gomillion: A Remedial Excavation Project of Site 15 located on the southwest end of Naval Air Station Whiting Field has generated approximately 10 cubic yards of soil that contains small amounts of inorganic material, (metals). Analysis indicates that this material is not a hazardous waste, and is not regulated under the Resource Conservation and Recovery Act, (Subtitle C). I request that this material be accepted for disposal at Santa Rosa County Landfill as special waste and placed in the lined portion of Santa Rosa County Landfill. It is understood that a commensurate disposal fee will be charged and that CH2MHILL or their designee will pay all disposal costs. If you have any questions please contact Ron Stabler at 623-7181, extension 40. A fax response will be acceptable. As always, your cooperation is greatly appreciated. Sincerely, Ronald Stabler Hazardous Waste Manager Ronall State. NAS Whiting Field # Department of Public Works SANTA BOSA COUNTY, FLORIDA Milton, Florida 32583 FP.ANK ROWELL Director of Public Works 6075 Old Bagdad Hwy. 626-0191 • 994-5721 • 623-2221 FAX 623-1331 AVIS WHITFIELD, Director Road & Bridge Depr 8075 Old Bagded Hwy. 626-0191 - 994-5721 - 623-2221 TONY GCMILLION, Director Solid Waste/Mosquiro Control/ Environmental Control 5075 Old Regdot Hry. 528-0191 • 994-5721 • 823-2221 JAMES P. STEWART, Cleantor Building Maintenance/Parss/Animal Control P.O. Box 864 823-1569 - 936-1877 July 27, 2000 Mr. Ron Stabler NAS Whiting Field Public Works Dept. 7151 USS Wasp Street Milton, Florida 32570-6159 VIA FAX: 850/623-7515 Dear Mr. Stabler: Your authorization for disposal of soil referenced in your July 27th letter is approved and should be identified as SPW #290. Be sure the hauler identifies this material upon arrival. This authorization expires August 18, 2000. Sincerely, Jony M. Gomillion Director of Environmental Control Santa Rosa County TMG/vb #### SANTA ROSA COUNTY SOLID WASTE DEPARTMENT CENTRAL LANDFILL TAG# 5 Ticket# 100612 Dite 08/18/90 WEIGHMASTER Gordonfan Time In 11:43 Time Out 12:01 Vehicle No. 195 Account No. 390 Tires # 0 Tire # # 0.00 CASH SRC Description 9 SPECIAL WASTE cost/ton Gross Tare 52520 lb Net Net Tone 19660 lb Net Tons . WEIGHT MASTER Amount Due \$ 491.50 OPEN MON-SAT 7AM-5PM / CLOSED SUNDAY (850) 623-9643 8/10/00 NAS WHITING FIELD #151168.20.01,03.90 CTO-11 - SITE 15 DISPOSAL OF SOIL 9.83 tons @\$50/TON =\$149150 | | | | | | | A Section of Section | | | - | رونه مي
درونه مي | | |-------------|--|---------------------------------|-----------------------------|---------------------------|------------|----------------------|------------------|-----------|--------------------------|---------------------|-----------------------| | | | | | | | 1 | | | 288 Y | | 3 × 8 | | | NON-HAZARDOUS
WASTE MANIFEST | 1. Generator's U
F. J. 2.1.7 | S EPA ID No.
- 0-0-2-3-2 | Manii
Docume
ム・ア・/ | ent No. | 2. Page
of | $\frac{1}{z}$ | ,000 | 0810 | | į. | | ا بـ | Generator's Name and Mailing Address NAS Whiting Field 7157 USS Wash ST. | MITTON FI | | | - | | | | | | | | | 4. Generator's Phone (\$50) 623 - 7 | (8) | | | | | | | | | | | ı | 5. Transporter 1 Company Name | | v | PA ID Number | 1 | | sporter's Ph | | 007 | | i | | | Southern Waste Service, | Inc. | F. L.O.O.O | O.7.5.6.8
PA ID Number | | | 9- 969 | | 77 | | | | | 7. Transporter 2 Company Name | | | | | | | | | | | | | 9. Designated Facility Name and Site Address Sawta Rosa County Landfi | ·// | _ | PA ID Number | | | ity's Phone | | | | | | | 5387 Dalisa Rd. MiTTON Fl. 3 | 32533 | 1057 | , 0000 | 1.5 | 850 | -623 | -98 | 43 | | | | | 11. Waste Shipping Name and Description | | | | | | 12. Conta
No. | Type | 13.
Total
Quantity | | 14.
Unit
Wt/Vol | | | a Arsenic Impacted Soil Ci | 100-442 | diams) | | | | | | | | | | П | " TriseNIE IMPACIER SOIT CH | VON HAZ | moscas) | | | | 4 | ייע | | | Tu | | | | | | | | | 0.0.1 | BX | 00.0. | 1.0 | 12, | | GE | b. | | | | | ĺ | | } | | | į | | N | | | | | | | | | | | | | R | - | | | | | | | | | | | | A | c. | | | | | | | | | | | | O
R | | | | | | | | <u> </u> | <u> </u> | | | | 1 | d. | | | | | | | | | | | | ١ | | | | | | | | | | | | | 1 | D. Additional Descriptions for Materials Listed Ab | ove | | | | E. Hand | dling Codes | for Wa | stes Listed Ab | ove | | | | D. Additional Descriptions for Materials Listed Ab | ove | | | | | J | | | | | | ļ | ١ | 15. Special Handling Instructions and Additional Ir | nformation | | | | 1 | | | | | | | ١ | | | n | | | | | | | | | | 1 | He. APILOVAL SPU | 14 210 | | | | | | | | | | | ١ | - · · · - | | | | | | | | | | ! | | | Box 8153 | | | | | | | | | | | | ۱ | 25, 0 | | | | | | | | | | | | ۱ | | | | | 4 - 4-1 | | anading pro | ner diene | seal of Hazardoi | ıs Was | te. | | | 16. GENERATOR'S CERTIFICATION: I certify the | e materials described : | Signatur | | denu regul | adops for t | // | per diope | Month | Day | Year | | V | Printed/Typed Name | 1000 | a | . رک . | للد | كلب | - <i>!</i> | | 08 | 10 | 100 | | | | f Materials | | | | | | | | | | | A | Printed/Typed Name 1 |
 Signatu | | ₽ | | حمي | _ | Month | Day | Y | | S | ROBONI A LEGG | 755C | | | 7 | 1 | | | OS | 1.3 | | | Ö | 18. Transporter 2 Acknowledgement of Receipt o | f Materials | | | | | | | Month | Day | Year | | TRANSPORTER | Printed/Typed Name | | Signatu | e
 | | | | | | Ŀ | | | _ | 19. Discrepancy Indication Space | | | | | | | | | | | | FAC | | | | | | | | | | | | | 4 | | | | | | | | | | | | | 1 | 20. Facility Owner or Operator: Certification of re | enint of wests meter | ials covered by this | nanifast except as | noted in | tem 19 | | | | | | | ı | 20. Facility Owner or Operator: Certification of re | ceipt or waste mater | iais covered by IIIS | Harmest skoppt do | | | | | | | | | ہ
اغ | Printed/Typed Name | | Signatu | re | 1) | | | | Month | Day | Year | | * 1 | James Lee | | LC | mes | Le | | | | 18 | 0 | C | | | med by J. L KELLERA ASSOCIATES, INC. | | | | | | 1.6 | e der | | 4 | gal yarahag - | | N | enet WI 5465 - 0368 - 7 - 74 | ORIGINA | L - RETURN | TO GENERA | TOR | | - ded to | | | es e | a Maria | # **Appendix D Analytical Data** - Delineation Sampling Analytical Results Confirmation Sampling Analytical Results (CD only) Ms. AMY TWITTY CH2M Hill 1778 Sea Lark Lane Navarre, FL 32566 Project: NASWF, SITE 15 Sampled By: Client Code: 084100710 REPORT OF RESULTS Page 1 | | | | REPORT | OF RESULIS | | DATE/ | rage 1 | |-------------|----------|-------------|------------|------------|----------|-------------|----------| | LOG NO | SAMPLE | DESCRIPTION | , SOLID OR | SEMISOLID | SAMPLES | TIME SAMPLE | D | | 06350-1 | 1550340 |)1 | | | | 06-13-00/17 | ':38 | | 06350-2 | 1580350 |)1 | | | | 06-13-00/17 | :50 | | 06350-3 | 1580360 |)1 | | | | 06-13-00/17 | :57 | | 06350-4 | 1580360 |)1 (DUP) | | | | 06-13-00/17 | :57 | | 06350-5 | 15SO370 |)1 | | | | 06-13-00/18 | 1:03 | | PARAMETER | | | 06350-1 | 06350-2 | 06350-3 | 06350-4 | 06350-5 | | Arsenic (60 | 10), mg/ | /kg dw | 1.7 | 2.1 | 2.0 | 1.9 | 1.6 | | Analyst | | | GSP | GSP | GSP | GSP | GSP | | Prep Date | | | 06.14.00 | 06.14.00 | 06.14.00 | 06.14.00 | 06.14.00 | | Analysis Da | ate | | 06.15.00 | 06.15.00 | 06.15.00 | 06.15.00 | 06.15.00 | | Batch ID | | | PS114 | PS114 | PS114 | PS114 | PS114 | | Prep Metho | d | | 3050A | 3050A | 3050A | 3050A | 3050A | | Dilution Fa | | | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | Ms. AMY TWITTY CH2M Hill 1778 Sea Lark Lane Navarre, FL 32566 Project: NASWF, SITE 15 Sampled By: Client Code: 084100710 REPORT OF RESULTS Page 2 | LOG NO | SAMPLE DESCRIPTION , LIQUID SAMPLES | | DATE/
TIME SAMPLED | |---|-------------------------------------|---|-----------------------| | 06350-6 | 15R0301 | | 06-13-00/20:30 | | PARAMETER | | 06350-6 | | | Arsenic (60) Analyst Prep Date Analysis D Batch ID Prep Metho | ate | <0.005
CH
06.15.00
06.16.00
PW199
3010 | | Ms. AMY TWITTY CH2M Hill 1778 Sea Lark Lane Navarre, FL 32566 Project: NASWF, SITE 15 Sampled By: Client Code: 084100710 REPORT OF RESULTS Page 3 | LOG NO | SAMPLE DESCRIPTION , QC R | EPORT FOR SOLID | | DATE/
TIME SAMPLEI |) | |--|--|---|--|---|---| | 06350-7
06350-8
06350-9
06350-10 | Method Blank Lab Control Standard % Rec Matrix Spike % Recovery Matrix Spike Duplicate % 1 | - | | , | | | PARAMETER | | 06350-7 | 06350-8 | 06350-9 | 06350-10 | | Arsenic (60 Analyst Prep Date Analysis D Batch ID Prep Metho | p d | 0.40 U
GSP
06.14.00
06.15.00
PS114
3050A | 103.9 %
GSP
06.14.00
06.15.00
PS114
3050A | 95.8 %
GSP
06.14.00
06.15.00
PS114
3050A | 94.4 %
GSP
06.14.00
06.15.00
PS114
3050A | Ms. AMY TWITTY CH2M Hill 1778 Sea Lark Lane Navarre, FL 32566 Project: NASWF, SITE 15 Sampled By: Client Code: 084100710 REPORT OF RESULTS Page 4 | LOG NO | SAMPLE DESCRIPTION , QC REPO | RT FOR LIQUII | SAMPLES | TIME SAMPLE |) | |---|--|---------------|--|----------------|--| | 06350-11
06350-12
06350-13
06350-14 | Method Blank Lab Control Standard % Recov Matrix Spike % Recovery Matrix Spike Duplicate % Rec | - | | | | | PARAMETER | | | 06350-12 | 06350-13 | 06350-14 | | Arsenic (60 Analyst Prep Date Analysis D Batch ID Prep Metho Dilution F | 10), mg/l
ate | | 102 %
CH
06.15.00
06.16.00
PW199
3010 | CH
06.15.00 | 102 %
CH
06.15.00
06.16.00
PW199
3010 | These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL Project Manager who signed this test report. Rick Hayes, Project Manager Final Page Of Report Severn Trent Laboratories, Inc. Pensacola, FL 32514 Tel: (850) 474-1001 Fax: (850) 478-2671 ### **Data Qualifiers for Final Report** STL-Pensacola Inorganic/Organic J4 (For positive results) Temperature limits exceeded (<2°C or > 6°C), non-reportable for NDPES compliance monitoring. J6 (For positive results) LCS or Surrogate %R is > upper control limit (UCL), results may be biased high J9 (For positive results) LCS or Surrogate %R is < lower control limit (LCL), results may be biased low J7 The reported value is > the laboratory MDL and < lowest calibration standard; therefore, the quantitation is an estimation (this qualifier should only be used when the STL-PN RL is below the lowest calibration standard in the initial calibration). J (description) The analyte was positively identified, the quantitation may be an estimation R₁ (For nondetects) Temperature limits exceeded (<2°C or > 6°C); non-reportable for NDPES compliance monitoring R2 Improper preservation, no preservative present or insufficient amounts of preservative in sample upon receipt, non-reportable for NDPES compliance monitoring R3 Improper preservation, incorrect preservative present in sample upon receipt, non-reportable for NPDES compliance R4 Holding time exceeded, non-reportable for NDPES compliance monitoring. Collection requirements not met, improper container used for sample R5 R6 LCS or surrogate %R is < LCL and analyte is not detected or surrogate %R is < 10% for detects/nondetects. R7 Internal standard area outside -50% to +100% of calibration verification standard. R8 Initial calibration or any calibration verification exceeds acceptance criteria. **R10** Headspace >1/4" in diameter in volatile vials, non-reportable for NPDES compliance monitoring R12 Analysis performed outside the 12-hour tune or not within tune criteria. R (description) The data may be unusable due to deficiencies in the ability to analyze the sample and meet QC criteria The reported value is < STL-Pensacola RL and > the STL-Pensacola MDL; therefore, the quantitation is estimation (assume the STL-PN RL is at or above lowest calibration standard in the initial calibration curve). The reported value is < Laboratory MDL (value for result will be the MDL, never below the MDL) U The analyte was found in the associated blank as well as in the associated sample(s) (qualifier is applied to the sample, not to **B3** The analyte was detected in the associated method blank (sample itself is flagged even though sample is ND). **B1** The analyte was detected in the sample(s) and in the associated method blank analyzed on the day samples were B₂ extruded; however, this analyte was not detected in the blank analyzed with the samples. **B**4 Sample results were corrected due to contaminants in Fractionation Blank @ Adjusted reporting limit due to sample composition, not due to overcal (dilution prior to digestion and/or analysis). # Elevated reporting limit due to insufficient sample size M A matrix effect was present ('sample, MS or MSD was analyzed twice to confirm surrogate/spike failure, 2sample and/or MS/MSD chromatogram(s) had interfering peaks, ³sample result was > 4 X spike added, ⁴metals serial dilution was performed, or ⁵metals post spike is < 40% R) Not enough sample provided to prepare and/or analyze a method-required matrix spike (MS) and/or duplicate (MSD) NoMS N/C* Not Calculable; Sample spiked is > 4X spike concentration (may also use this flag in place of negative numbers) D Diluted out (surrogate or spike due to sample dilution) Second-column or detector confirmation exceeded the SW-846 criteria of 40% RPD for this compound. T TIC The compound is not within the initial calibration curve. It is searched for qualitatively or as a Tentatively Identified Compound. 1 pt The compound has been quantitated against a one point calibration. Ε Compound concentration exceeds the upper calibration range of the instrument. Incorrect sample amount was submitted to the laboratory for analysis S2 Normally used for Inorganics Only S3 (Flashpoint) This method is not designed for solids and the results may not be accepted by any regulator for such purposes. R9 Not filtered and preserved at time of collection. **R11** Samples were filtered and preserved within 4 hours of collection. * (Metals & Wet Chem) Elevated reporting limit due to matrix interference (dilution prior to digestion and/or analysis) Post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is less than 50% spike absorbance. Sample and/or duplicate result is at or below 5 X (times) the STL Reporting Limit and the absolute difference between the G sample and duplicate result is at or below the
STL reporting limit; therefore, the results are "in control". Q The analytical (post digestion) spike is reported due to the percent recovery being outside limits on the matrix (predigestion) spike. H1 Sample and/or duplicate is below 5 X (times) the STL Reporting Limit and the absolute difference between the results exceeds the STL Reporting Limit; therefore, the results are "out of control" Sample and duplicate (or MS and MSD) RPD is above control limit. Sample and duplicate results are "out of control". The sample is nonhomogeneous. " The Method of Standard Additions (MSA) has been performed on this sample. Matrix spike and post spike recoveries are outside control limits. See out of Control Events/Corrective Action Form. H2 HN 8L S1 Severn Trent Laboratories, Inc. Pensacola, FL 32514 Tel: (850) 474-1001 Fax: (850) 478-2671 Any time a sample arrives at the laboratory improperly preserved (at improper pH, temperature or with chlorine present) or after holding time has expired, the laboratory is required to reject the samples. The client must be notified in writing (i.e. OOCE/CA form or PSIF). The project manager is responsible for ensuring the client or laboratory takes corrective action. If the client requests that samples be prepared and/or analyzed when improperly preserved and/or outside holding time, the final report must be flagged and corrective action must be taken with the client to ensure this does not happen on a regular basis. #### **Abbreviations** ND Not Detected at or above the STL-Pensacola reporting limit (RL) & Automated NS Not Submitted NA Not Applicable DISS Dissolved T&D Total & Dissolved R Reactive TOT Total IDL STL-PN Instrument Detection Limit MDL STL-PN Method Detection Limit RL STL-PN Reporting Limit #### Florida Projects Inorganic/Organic Refer to FL DEP 62-160.700(7); Table 7 Data Qualifier Codes. FL DEP Rule 62-160.670(1)(h) states that laboratories shall include the analytical result for each analysis with applicable data qualifiers. FL DEP Rule 62-160.700(7), Table 7 lists the FL DEP data qualifiers. FL DEP Rule 62-160.700(3), Table 3 lists the Florida sites which require data qualifiers. #### **AFCEE QAPP Projects** Refer to AFCEE QAPP for appropriate data qualifiers (AFCEE QAPP Version will be specified by client for the project). #### **CLP and CLP-like Projects** Refer to referenced CLP Statement of Work (SOW) for explanation of data qualifiers. CLP SOW to be followed must be specified to client. " #### SEVERN TRENT LABORATORIES, INC. - PENSACOLA, FLORIDA STATE CERTIFICATIONS Alabama Department of Environmental Management, Laboratory ID No. 40150 (Drinking Water by Reciprocity with FL) Arizona Department of Health Services, Lab ID No. AZ0589 (Hazardous Waste & Wastewater) Arkansas Department of Pollution Control and Ecology, (No Laboratory ID No. assigned by state) (Environmental) State of California, Department of Health Services, Laboratory ID No. 2338 (Hazardous Waste and Wastewater) State of Connecticut, Department of Health Services, Connecticut Lab Approval No. PH-0697 (Drinking Water, Hazardous Waste and Wastewater) Delaware Health & Social Services, Division of Public Health, Laboratory ID No. FL094 (Drinking Water by Reciprocity with FL) Florida DOH Laboratory ID No. 81142 (Drinking Water), Laboratory ID No. E81010 (Hazardous Waste and Wastewater) Florida, Radioactive Materials License No. G0733-1 Foreign Soil Permit, Permit No. S-37599 Kansas Department of Health & Environment, Laboratory ID No. E10253 (Wastewater and Hazardous Waste) Commonwealth of Kentucky, Natural Resources and Environmental Protection Cabinet, Laboratory ID No. 90043 (Drinking Water) State of Louisiana, DHH, Office of Public Health Division of Laboratories, Laboratory ID No. LA000017 (Drinking Water) State of Maryland, DH&MH Laboratory ID No. 233 (Drinking Water by Reciprocity with Florida) Commonwealth of Massachusetts, DEP, Laboratory ID No. M-FL094 (Hazardous Waste and Wastewater) State of Michigan, Bureau of E&OccH, Laboratory ID No.9912 (Drinking Water by Reciprocity with Florida) New Hampshire DES ELAP, Laboratory ID No. 250599A (Wastewater) State of New Jersey, Department of Environmental Protection & Energy, Laboratory ID No. 49006 (Wastewate and Hazardous Waster) New York State, Department of Health, Laboratory ID No. 11503 (Wastewater and Solids/Hazardous Waste) North Carolina Department of Environment & Natural Resources, Laboratory ID No. 314 (Hazardous Waste and Wastewater) North Dakota DH&Consol Labs, Laboratory ID No. R-108 (Hazardous Waste and Wastewater by Reciprocity with Florida) State of Oklahoma, Oklahoma Department of Environmental Quality, Laboratory ID No. 9810 (Hazardous Waste and Wastewater) Commonwealth of Pennsylvania, Department of Environmental Resources, Laboratory ID No. 68-467 (Drinking Water) South Carolina DH&EC, Laboratory ID No. 96026 (Wastewater by Reciprocity with FL and Solids/Hazardous Waste by Reciprocity with CA) Tennessee Department of Health & Environment, Laboratory ID No. 02907 (Drinking Water) Tennessee Division of Underground Storage Tanks Approved Laboratory Virginia Department of General Services, Laboratory ID No. 00008 (Drinking Water by Reciprocity with FL) State of Washington, Department of Ecology, Laboratory ID No. C282 (Hazardous Waste and Wastewater) West Virginia Division of Environmental Protection, Office of Water Resources, Laboratory ID No. 136 (Hazardous Waste and Wastewater by Reciprocity with FL) American Industrial Hygiene Association (AIHA) Accredited Laboratory, Laboratory ID No. 100704 \text{lword\certlist\condcert.lst} revised 04/25/00 Severn Trent Laboratories of Florida PROJECT SAMPLE INSPECTION FORM | Lab Order #:(1006350 | Date Received: | |---|---| | 1. Was there a Chain of Custody? Xes No* | 8. Were samples checked for preservative? (Check pH of all H ₂ O requiring preservative (STL-PN SOP 917) except VOA vials that require zero | | Was Chain of Custody properly filled out and relinquished? Were samples received cold? | headspace)* 9. Is there sufficient volume for Yes No* N/A analysis requested? 10. Were samples received within Yes No* | | (Criteria: 2° - 6°C: STL-SOP 1055) 4. Were all samples properly labeled and identified? 5. Did samples require splitting or compositing*? | Holding Time? (REFER TO STL-SOP 1040) 11. Is Headspace visible > 1/4" in Yes* No N/A diameter in VOA vials?* If any headspace is evident, comment in out-of-control section. | | Req By: PM Client Other* 6. Were samples received in proper Yes No* containers for analysis | 12. If sent, were matrix spike bottles Yes No* N/A returned? | | requested? 7. Were all sample containers received intact? Yes No* | 13. Was Project Manager notified of Yes No* N/A problems? (initials:) | | Airbill Number(s): | Shipped By: WALK-TIN | | Cooler Number(s): WAIKIN | Shipping Charges: Cooler Temp(s) (°C): | | Cooler Weight(s): | (LIST THERMOMETER NUMBER(S) FOR VERIFICATION) | | Out of Control Events and Inspection Comment | s: | | | * | | | | | | | | | | | | (USE BACK OF PSIFFOR ADDITIONAL NOTES AND COMMENTS) | | Inspected By: Date: 6/14/00 |) Logged By: <u>LLK</u> Date: 14-Jun-00 | | A Note all Out of Control and/or questionable events on Comment Section | of this form. | - If Other, note who requested the splitting or compositing of samples on the Comment Section of this form. All volatile samples requested to be split or composited must be done in the Volatile Lab. Document: "Volatile sample values may be compromised due to sample splitting (compositing)" - All preservatives for the State of North Carolina, the State of New York, and other requested samples are to be recorded on the sheet provided to record pH results (STL-SOP 938, section 2.2.9). - * According to EPA, %" of headspace is allowed in 40 ml vials requiring volatile analysis, however, STL makes it policy to record any headspace as outof-control (STL-SOP 938, section 2.2.12). # Committed To Your Success ### **Severn Trent Laboratories** 3355 McLemore Drive • Pensacola, FL 32514 Tel: (850) 474-1001 • Fax: (850) 474-4789 # **CHAIN OF CUSTODY** LAB ACCESSION # (XXX)(1350 | PART 1 - Bottle Ship | | | | | - | n | _ | <u>Ct</u> | 10 | W\ | H | <u></u> | | | | | | | | | | | | | _ | | | | | |--|--------------------------------|----------|--------------------------|----------------|--------------|-------------|------|-----------|--------------|----------|----------------------|----------|-----------|------------|------------|--------------|-------------|------------|----------|----------|-----------|----------------|-----------------|----------|----------|------------|----------|-----------|--------------------------| | CLIENT: NASWF-1 | % . | S۱ | te_ | 10 | <u> 2</u> | | | | | CI | LIEN | TP | ROJ | EC. | NU | MB | ER: | | | | | | | | | | | | | | | | PI | RESE | RV | ATI | VE | | PL | .AST | ΓIC | CON | ITA | NE | RS | | GL | ASS | CO | NT/ | INE | RS | | L | | | | | | | | QUANTITY OF
SAMPLE
CONTAINERS
SHIPPED | H ₂ SO ₄ | HNO3 | HCL | Zn Acetate | Na,S,O, | Unpreserved | NaOH | 8 02. | 16 oz. | 32 oz. | ½ gallon | 1 gallon | Whirt-pak | 100-ML Cup | 120 ml (A) | 1 liter (A) | 1 liter (C) | 40 ml Vial | 4 oz. wm | 8 oz. wm | 16 oz. wm | 32 oz. wm | D.I. Trip Blank | | | | NOT | ΓES | _ | | | | _ | | | _ | _ | \sqcup | | | _ | H | | | | | | ļ | _ | L | _ | | | | | | | | ┢ | ╁╌ | H | | | | | | | - | \vdash | | | <u> </u> | Н | | \vdash | | | | | _ | H |
Relinquished By: | | | | | | | Time | • | | Dat | e | | Re | celv | ed By | r: | | | | | | | | | 1 | Time | | | Date | | PART 2 - Sample/Pro | ect | Info | orma | atio | n | | | | | <u> </u> | | | <u> </u> | | - | PAR | AM | ET | ERS | AN | ID I | PRE | SE | RVA |
\TI\ | /ES | RE | 2U | ESTED | | | | | PLE N | | | COD | ES | | | | | | - | | | П | | | П | T | T | | | | | П | | | | | DW DRINKING WATER WW WASTEWATER GW GROUNDWATER | | | SC | AI
SC
OI | OIL | | | | SI | L S | URFA
LUDG
TORM | E | | R | Arsenic | | | | | | | | | | | | | : | TOTAL #
OF
BOTTLES | | SAMPLE I.D. | | | SAM | PLE | DA | TE | SAR | APLE | TIN | RE | | TAN | | | ¥ | | | | | | | | | | | | | | 5011025 | | 15503101 | | | 6 | -13 | 3-6 | 20 | | 12 | | | S | 01 | _ | | X | | 世 | 0 | 니 | <u>D</u> | K | X | X | _ | | | | | | | 155037Ø1 | | | | 1 | | | _/ | | 27 | | | 1 | | | X | _ | | \coprod | | | | \dashv | | \perp | | | | | | | 155033¢1 | | | | 4 | | | 1 | 93 | 4 | | | \perp | | \perp | X | \perp | _ | Ц | _ | _ | _ | \rightarrow | | _ | _ | | \dashv | _ | | | 15503801 | | | | 4 | | _ | | 94 | 1-2 | - | | \perp | | 4 | X | \dashv | _ | Ц | _ | _ | _ | \dashv | _ | _ | _ | _ | _ | _ | | | 15503901 | | _ | | 4 | | | | | 18 | | | 1 | | \dashv | X, | \downarrow | _ | \coprod | _ | _ | _ | \dashv | \dashv | 4 | _ | | _ | _ | | | 15504001 | | | | 1 | | _ | | | 7 | - | | _ | | _ | X | 4 | _ | \sqcup | - | \dashv | _ | \dashv | _ | _ | \dashv | \dashv | _ | 4 | | | 15504101 | | \dashv | | 1 | | | | W | | _ | | _ | | - | X | _ | 4 | \coprod | _ | \dashv | _ | 4 | \dashv | _ | \dashv | | _ | \dashv | | | 15504201 | | | | + | | _ | | 00 | 2 | | | | | - | 싰 | - | \dashv | # | | _ | | _ | 4 | - | - | | | | | | 15504301 | | | | 1 | | _ | 2 | | <u>(2)</u> | \dashv | | | | \dashv | 싟 | \dashv | \dashv | H | -+ | \dashv | \dashv | 4 | _ | \dashv | _ | | - | \dashv | | | 15504401 | | | | A. | | | | 01 | 5 | | <u>v</u> | | | | XI. | | | V | | ᆜ | | ᆚ | | | ᆜ | | | | | | | D-11- | | had E | | | | | | | -т | | Date | | _ | Time | | τ- | | | | | | of I | sottle | s/C | | iners: | \dashv | - | | 1 | Hellin | iquis | hed E | 1/2 | | | | | | \dashv | | | 20 | - | 20 | | + / | 0 | P | 7 | Period | 7 | | | + | | 14/ | \dashv | 0800 | | | 27 | En | Zt | 4 | <u>'</u> | | | | | | 4-1 | | 00 | | 80 | | 1↓ | 7 | rri | (| Ti | 6 | \subseteq | | ٦, | <u> </u> | 1-0 | | 080 | | // | 9 | | 4 | | - | | | | | | 6 - | 14- | .e u | | 0., | | F |) | : Ju | 1U | <u></u> | <u> </u> | <u>~</u> | | + | <i>C</i> 1 | 4 · C | | 0080 | | | | | | | | | | | | | | | | | | | <u> </u> | | - | | | | | | 十 | | | 1 | | | Client CH2M H | | | | | | | | | | | | | | | Purc | has | e Ord | der I | Num | ber | | | | | | | | | | | Address 766 S | e | l | U | IV | L | . [| | L11 | 10 | | | | | | Proj | ect P | lmuk | ber | 15 | l I | (ge | } . | a | J. C | ١. | ٥. | 3.4 | 70 |) | | city Navarre | | | | | Stat | | F | <u></u> | _ | | 325 | | | | Proj | ect M | iame | N | AS | ill | F | | | | | | | | | | Phone Number (650) 9 | 34 | 1-6 | 530 | | Fax | Nun | nber | (0 | <u>50</u> | 92 | 34- | -α | 3 | 5 | Proj | ect L | oca | tion | 5 | , i . | TE | - | 15 | <u> </u> | | | | | | | Project Manager AM | 7 | 工 | $\overline{\mathcal{M}}$ | Π | \mathbb{D} | _ | | | | | | | | | Sam | pled | Ву | | | | | | | | | | | | | | TURNAROUN | T DI | IME | S | | | ١, | hec | k be | low | \perp | · . | | | | | | S | PE | CIA | . IN | STR | UC. | ПО | NS | | | | | | | Standard - 14-21 days | | | | | | | | | | \perp | RUSH (mus | t be | app | oved | in a | dva | nce) | 1 | | | \perp | <- 48 hours - 2x standard | pric | е | | | | _ | | | | \perp | 3-7 days - 1.5x standard pr | ice | | | | | 1 | | | | \perp | | | | | | | | | | | , | | | | | | | | | | TCLP - 1 week rush 1.5x s | and | ard (| price | | | | | | | \perp | QC Level none I | × | Q_{ij} | III |) | IV | | (cir | cle c | one) | | Сор | ies c | of rep | port | need | led | | | | | | | | | | | | | | # COOGOGO (CHAIN OF CUSTODY #### **Severn Trent Laboratories** 3355 McLemore Drive • Pensacola, FL 32514 Tel: (850) 474-1001 • Fax: (850) 474-4789 | Committed To Your Success PART 1 - Bottle Ship | 5 | Tel: | |) 47 | 74-10 | 001 • | Fax | : (8 | 50) 4 | 474- | 4789 | } | 1 | | | | | L | AB | AC | CE | :88 | IO | N # | | 0 | 0(| 2 | 350 | |--|--------------------------------|-----------------|----------|---|-----------|----------|----------------|----------|-------|----------|--------------|----------|---------------|------------|-------------------------|---------------|--|---------------|----------|----------|--------------|-----------|-----------------|----------------|----------|----------|----------|--------------|--------------------------| | CLIENT: NASWF - | - < | Sir | e | 15 | 5 | 7 | | | | CI | LIEN | ΤP | RO. | IEC' | T NL | JMB | ER: | 10 | 51 | 6 | 3., | Ð |) . | 01. | . () |)ろ. | 90 | | | | , | Γ | PI | RESE | RV | ATI | VE | | PL | AS1 | ΓIC | CON | ITA | INE | RS | | GL | ASS | CO | NT | AINI | ERS | | | | | | | | | | QUANTITY OF
SAMPLE
CONTAINERS
SHIPPED | н ₂ SO ₄ | HINO3 | HCL | HCL
Zn Acetate
Ne ₂ S ₂ O ₃
Unpreserved
NaOH | | | | | | 32 oz. | ½ galion | 1 gallon | Whirl-pak | 100-ML Cup | 120 ml (A) | 1 liter (A) | 1 liter (C) | 40 ml Vial | 4 oz. wm | 8 oz. wm | 16 oz. wm | 32 oz. wm | D.I. Trip Blank | | | | NOT | ΓES | | | | - | | \sqcup | | <u> </u> | _ | | <u> </u> | _ | _ | | | _ | - | | | L | <u> </u> | ┡ | ├ | - | <u> </u> | | ╀ | | | | | | | | - | | - | \dashv | - | | \vdash | H | ├ | _ | - | | - | - | ┢ | | _ | | ├ | ├ | \vdash | - | ┢ | ╂ | | | | | · | L | | | | | | | | | _ | | | / | | 2 | 2 | 2 | | | | | <u> </u> | _ | | | L | <u> </u> | L | <u> </u> | <u>Ļ</u> . | | L | _ | | | | | | | Relinquished By: | | | | | | | Time | 0 | 3 | Del
G | -6 | | Re | | ed By | <u></u>
r: | <u> </u> | L | L_ | L | L | <u> </u> | <u>i_</u> | <u> </u> | | Time | | | Date | | PART 2 - Sample/Proj | K CT | Inic | rma | tio | n | | 7 | | | | | | | | | PAF | RAN | IET | ER | S AI | ND | PRE | SE | RV/ | \TI | VES | REC | QU | ESTED | | DW DRINKING WATER WW WASTEWATER GW GROUNDWATER | s | AMF | so | ATF
AI
SC
OI | IR
DIL | CODI | ES | | SI | L S | URFA
LUDG | ìΕ | | R | Arsenic | | | | | | | | | | | | | | TOTAL #
OF
BOTTLES | | SAMPLE I.D. | | _ | SAM | | | | | | | Æ | | TAN | | _ | ₹ | \dashv | \dashv | _ | | _ | _ | | | | | | \perp | \dashv | <u></u> | | 15503461 | | \dashv | 6-1 | 3 | 0 | 2 | | 73 | | _ | Si | 011 | | _ | X | \dashv | \dashv | | | _ | | | | | | | _ | _ | | | 15503501 | | \dashv | | _ | _ | \dashv | | | 0 | \dashv | | + | | - | 쉬 | \dashv | \dashv | \dashv | | \dashv | | \dashv | | \vdash | | \vdash | -+ | ᅪ | | | 155036Ø1
155036Ø1(Di | 17) | $ \frac{1}{1} $ | | + | | \dashv | | 15
15 | | - | | + | | \dashv | $\langle \cdot \rangle$ | \dashv | \dashv | | | | \dashv | -+ | | \dashv | _ | \vdash | -+ | ┽ | | | 15503701 | <u> </u> | ㅓ | • | + | | \dashv | _ | 30 | | \dashv | | + | | + | ᢌ | \dashv | - | | | | ┰┤ | \dashv | | | - | \vdash | \dashv | \dashv | | | 1550 2601 | - | | | + | | \dashv | 15 | 3Z | 3 | \dashv | | + | | + | \overrightarrow{V} | 귑 | H | id | ה | ¥ | X | - † | | \dashv | | \vdash | \dashv | \dashv | | | 1550 2701 | | | | T | | 1 | | 33 | | 7 | | | | 1 | À | + | 1 | 7 | | | ' | 1 | | | | H | 十 | 7 | | | 15502001 | | | | | | | | 93 | | | | | | | Ź | 1 | 11 | \exists | | | | \Box | | | | | 寸 | ヿ | | | 15502901 | | | | | _/ | | 18 | 34 | B | | | | | | X | | \coprod | | | | | | | | | | | | | | 15503001 | | | | 7 | _ | | 19 | 1 | 4 | | | <u> </u> | | | X | | Y | · | | | T | | | Tota | d Nu | mber | r of | Bottk | 96/C | onta | iners: | \bot | | | 11 | Relin | quis | hed B | y | | | | | | \dashv | _ | Date | 70- | | Time | 1 - | ╀ | | <u> </u> | | elved | By | | | \dashv | _ | ate | _ | Time | | A CON | 1 4 | 4 | | | | | | | | - | (A) (A) | 5/ | w | 2 | 1 | 2 | + | 1 | <u> </u> | | 10 | 4 | 1 | - - | + | | ار د | \leftarrow | 0800 | | | | 1 | Zig. | | | - , | | | | | 0/ | | ØC. | 0 | 83 | 0 | 10 | \mathcal{H} | U. | <u> </u> | en |) U | L | cir | | 67 | 40 | 4 | 0850 | | | | | | | | | | | | | | | | | | | T | | | | | | | | \dashv | • | | 寸 | | | Client CHOM HI | _(| _ | | | | | | | | | | | | | Purc | :has | e Or | der | Nun | ber | | | | | | | | | | | Address 17(06 S1 | ea | _ (| Llv | Ł | L | U | ne | - | | | | | | | Proj | ect f | Num | ber | | | | | | | ï | | | | | | city Navarre | | | | | Stat | e l | \overline{A} | _ | Zi | ρŹ | 323 | Ŝί | υĢ | , | Proj | ect l | Vam | e / | JA | SI | N | _ | | | | • | | | | | Phone Number (8509) | 3 | 1-6 | 330 | 9 | Fax | Nun | nber | (O | 54 | 9 | 39 | -R | Ø | 35 | Proj | ect l | _oca | tion | 5 | 711 | E | <u>l'</u> | 5 | | | | | | | | Project Manager A MY | | TU | JIT | Ŋ | | , | | | | | | | | | Sam | pled | Ву | | | | | | | | | | | | | | TURNAROUN | D T | IME | S | | | C | heci | k be | low | | | | | | | | ; | SPE | CIA | L IN | STR | UCT | TIO | NS | | | | | | | Standard - 14-21 days | RUSH (must | be a | appr | oved | in a | dva | nce) | | | | \int | <- 48 hours - 2x standard | price | • | | | | | | | | \int | | | | | | | | | | |
 | | | | | | | | | 3-7 days - 1.5x standard pr | ice | | | | | | | | | \perp | TCLP - 1 week rush 1.5x st | and | ard p | orice | | | 1_ | | | | \perp | OC Level none I | - 11 | | Zui | ` | W | | lair | ء ھاء | anal | - 1 | C00 | | · | ~~ | | 4-4 | | | | | | | | | | | | | | **PART 1 - Bottle Shipment Information** #### **Severn Trent Laboratories** 3355 McLemore Drive • Pensacola, FL 32514 Tel: (850) 474-1001 • Fax: (850) 474-4789 ## CHAIN OF CUSTODY #### **CLIENT PROJECT NUMBER: CLIENT: PLASTIC CONTAINERS GLASS CONTAINERS PRESERVATIVE** QUANTITY OF SAMPLE 120 ml (A) 40 ml Vial Q CONTAINERS % gallon 를 **NOTES** iie ije j 16 oz. SHIPPED 20 8 02. Date Received By: Time Relinquished By: Time Date PARAMETERS AND PRESERVATIVES REQUESTED PART 2 - Sample/Project Information **SAMPLE MATRIX CODES** AI AIR SO SOIL Arkein DW DRINKING WATER SW SURFACE WATER TOTAL # WW WASTEWATER SLUDGE OF STORMWATER GW GROUNDWATER OI OIL BOTTLES SAMPLE TIME MATRIX SAMPLE I.D. SAMPLE DATE SOIL 40 2020 Co-13-00 5SC460 (MSIMSD Soll 11 from 4501 71 6-13-00 WATER ZD3D **Total Number of Bottles/Containers:** Received By Time 6-14 0800 0850 6-14-00 Client **Purchase Order Number** Address **Project Number** City State Zip Project Name Phone Number (Fax Number (**Project Location** Sampled By **Project Manager TURNAROUND TIMES** check below **SPECIAL INSTRUCTIONS** Standard - 14-21 days RUSH (must be approved in advance) <- 48 hours - 2x standard price 3-7 days - 1.5x standard price TCLP - 1 week rush 1.5x standard price QC Level none /m/ IV (circle one) Copies of report needed ### STL Pensacola LOG NO: C0-07543A Received: 25 JUL 00 Reported: 25 AUG 00 Mr. Scott Dunbar CH2M Hill 115 Perimeter Center Place NE 700 Atlanta, GA 30346 Project: CTO-0011, NASWF Sampled By: Client Code: 111500825 Page 1 #### REPORT OF RESULTS | LOG NO | SAMPLE DESCRIPTION , SOLID OR | SEMISOLID SAMPLES | DATE/
TIME SAMPLED | SDG# | |---|--|--|----------------------------------|------| | 07543A-1
07543A-2 | 20000724-SITE 15-B-01
20000724-SITE 15-B-02 | | 07-24-00/16:18
07-24-00/16:18 | | | PARAMETER | | | 07543A-2 | | | Arsenic (603 Dilution Fa Prep Date Analysis Da Batch ID Prep Method Analyst | 10), mg/kg dw
actor
ate | 1.4
1
07.26.00
07.27.00
PS145
3050A
CH | 1
07.26.00 | | #### STL Pensacola LOG NO: C0-07543A Received: 25 JUL 00 Reported: 25 AUG 00 Mr. Scott Dunbar CH2M Hill 115 Perimeter Center Place NE 700 Atlanta, GA 30346 Project: CTO-0011, NASWF Sampled By: Client Code: 111500825 | | REPORT OF RESULTS | | | Page 2 | |---|-------------------------------------|--|-----------------------|--------| | LOG NO | SAMPLE DESCRIPTION , LIQUID SAMPLES | | DATE/
TIME SAMPLED | SDG# | | 07543A-3 | 20000724-SITE 15-EB-01 | | 07-24-00/14:10 | 7543 | | PARAMETER | | 07543A-3 | | | | Arsenic (60
Dilution F
Prep Date
Analysis D
Batch ID
Prep Metho
Analyst | 10), ug/l
actor
ate | 3.0 U
1
07.26.00
07.27.00
PW247
3010A
CH | | | #### STL Pensacola LOG NO: C0-07543A Received: 25 JUL 00 Reported: 25 AUG 00 Mr. Scott Dunbar CH2M Hill 115 Perimeter Center Place NE 700 Atlanta, GA 30346 Project: CTO-0011, NASWF Sampled By: Client Code: 111500825 REPORT OF RESULTS Page 3 | LOG NO | SAMPLE DESCRIPTION | , QC REPORT | FOR SOLID | /SEMISOLID | DATE/
TIME SAMPLE | :D | | |---|--|--|---|---|------------------------------------|-------------------|---| | 07543A-4
07543A-5
07543A-6
07543A-7
07543A-8 | Method Blank Lab Control Standa Lab Control Standa Lab Control Standa LCS Accuracy Contr | rd True Valurd % Recover | сy | | | | • | | PARAMETER | | 07543A-4 | 07543A-5 | 07543A-6 | 07543A-7 | 07543A-8 | | | Arsenic (60) Dilution Fa Prep Date Analysis Date Batch ID Prep Method Analyst | ate | 0.3 U
1
07.26.00
07.27.00
PS145
3050A
CH | 76.5
1
07.26.00
07.27.00
PS145
3050A
CH | 75.2
1
07.26.00
07.27.00
PS145
3050A
CH | 1
07.26.00
07.27.00
PS145 | 07.27.00
PS145 | | STL Pensacola LOG NO: C0-07543A Received: 25 JUL 00 Reported: 25 AUG 00 Mr. Scott Dunbar CH2M Hill 115 Perimeter Center Place NE 700 Atlanta, GA 30346 Project: CTO-0011, NASWF Sampled By: Client Code: 111500825 REPORT OF RESULTS Page 4 | | | | 01 11200210 | | | rage r | |---|--|---|------------------------------------|------------|----------------------|------------------------------------| | LOG NO | SAMPLE DESCRIPTIO | N , QC REPOR | T FOR SOLID | /SEMISOLID | DATE/
TIME SAMPLE | ED | | 07543A-9
07543A-10
07543A-11
07543A-12
07543A-13 | Matrix Spike Resu
Matrix Spike % Re
Matrix Spike Dupl
Matrix Spike Dupl
Precision (%RPD) | covery
icate Result
icate % Reco | | | | | | PARAMETER | | 07543A-9 | 07543A-10 | 07543A-11 | 07543A-12 | 07543A-13 | | Arsenic (60 Dilution F Prep Date Analysis D Batch ID Prep Metho Analyst | ate | 89.8
1
07.26.00
07.27.00
PS145
3050A
CH | 1
07.26.00
07.27.00
PS145 | 1 | PS145 | 1
07.26.00
07.27.00
PS145 | #### STL Pensacola LOG NO: C0-07543A Received: 25 JUL 00 Reported: 25 AUG 00 Mr. Scott Dunbar CH2M Hill 115 Perimeter Center Place NE 700 Atlanta, GA 30346 Project: CTO-0011, NASWF Sampled By: Client Code: 111500825 Page 5 #### REPORT OF RESULTS | 07543A-14 MS Accuracy Advisory Limit (%R) 07543A-15 MS Precision Advisory Limit (%RPD) | | |--|--------------------| | | | | PARAMETER 0 | 7543A-14 07543A-15 | | | +/- 25 | Rick Hayes, Project Manager Final Page Of Report **B3** G H₂ J8 Severn Trent Laboratories, Inc. Pensacola, FL 32514 Tel: (850) 474-1001 Fax: (850) 478-2671 #### **Data Qualifiers for Final Report** STL-Pensacola Inorganic/Organic **B**1 The analyte was detected in the associated method blank (sample itself is flagged even though sample is ND). B2 The analyte was detected in the sample(s) and in the associated method blank analyzed on the day samples were extruded; however, this analyte was not detected in the blank analyzed with the samples. The analyte was found in the associated blank as well as in the associated sample(s) (qualifier is applied to the sample, notto the blank). **B4** Sample results were corrected due to contaminants in Fractionation Blank D Diluted out (surrogate or spike due to sample dilution) Ε Compound concentration exceeds the upper calibration range of the instrument. The reported value is < STL-Pensacola RL and > the STL-Pensacola MDL; therefore, the quantitation is estimation (assume F the STL-PN RL is at or above lowest calibration standard in the initial calibration curve). Sample and/or duplicate result is at or below 5 X (times) the STL Reporting Limit and the absolute difference between the sample and duplicate result is at or below the STL reporting limit; therefore, the results are "in control". H1 Sample and/or duplicate is below 5 X (times) the STL Reporting Limit and the absolute difference between the results exceeds the STL Reporting Limit; therefore, the results are "out of control" Sample and duplicate (or MS and MSD) RPD is above control limit. J (description) The analyte was positively identified, the quantitation may be an estimation (For positive results)Temperature limits exceeded (<2°C or ≥ 6°C), non-reportable for NDPES compliance monitoring. J6 (For positive results) LCS or Surrogate %R is > upper control limit (UCL), results may be biased high **J7** The reported value is > the laboratory MDL and < lowest calibration standard; therefore, the quantitation is an estimation (this qualifier should only be used when the STL-PN RL is below the lowest calibration standard in the initial calibration). Matrix spike and post spike recoveries are outside control limits. See out of Control Events/Corrective Action Form. (For positive results) LCS or Surrogate %R is < lower control limit (LCL), results may be biased low J9 A matrix effect was present (¹sample, MS or MSD was analyzed twice to confirm surrogate/spike failure, ²sample and/or M1 MS/MSD chromatogram(s) had interfering peaks, ³sample result was > 4 X spike added, ⁴metals serial dilution was performed, or 5 metals post spike is < 40% R) M2 The MS and/or MSD %R or RPD was outside upper or lower control limits; not necessarily due to matrix effect. N/C* Not Calculable; Sample spiked is > 4X spike concentration (may also use this flag in place of negative numbers) NH Sample and duplicate results are "out of control". The sample is nonhomogeneous. **NoMS** Not enough sample provided to prepare and/or analyze a method-required matrix spike (MS) and/or duplicate (MSD) The analytical (post digestion) spike is reported due to the percent recovery being outside limits on the matrix (pre- digestion) spike. R (description) The data may be unusable due to deficiencies in the ability to analyze the sample and meet QC criteria (For nondetects) Temperature limits exceeded (<2°C or > 6°C); non-reportable for NDPES compliance monitoring
R2 Improper preservation, no preservative present or insufficient amounts of preservative in sample upon receipt, non-reportable for NDPES compliance monitoring R3 Improper preservation, incorrect preservative present in sample upon receipt, non-reportable for NPDES compliance Holding time exceeded, non-reportable for NDPES compliance monitoring. R4 R5 Collection requirements not met, improper container used for sample R6 LCS or surrogate %R is < LCL and analyte is not detected or surrogate %R is < 10% for detects/nondetects. Internal standard area outside -50% to +100% of calibration verification standard. R7 R8 Initial calibration or any calibration verification exceeds acceptance criteria. Not filtered and preserved at time of collection. R9 R10 Headspace >1/4" in diameter in volatile vials, non-reportable for NPDES compliance monitoring **R11** Samples were filtered and preserved within 4 hours of collection. Analysis performed outside the 12-hour tune or not within tune criteria. **R12** S1 The Method of Standard Additions (MSA) has been performed on this sample. S2 Incorrect sample amount was submitted to the laboratory for analysis This method is not designed for solids and the results may not be accepted by any regulator for such purposes. S3 (Flashpoint) Second-column or detector confirmation exceeded the SW-846 criteria of 40% RPD for this compound. TIC The compound is not within the initial calibration curve. It is searched for qualitatively or as a Tentatively Identified Compound. U The reported value is < Laboratory MDL (value for result will be the MDL, never below the MDL) W Post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is less than 50% spike @ Adjusted reporting limit due to sample composition, not due to overcal (dilution prior to digestion and/or analysis). Elevated reporting limit due to insufficient sample size 1 pt The compound has been quantitated against a one point calibration. (Metals & Wet Chem) Elevated reporting limit due to matrix interference (dilution prior to digestion and/or analysis) #### SEVERN TRENT LABORATORIES, INC. - PENSACOLA, FLORIDA STATE CERTIFICATIONS Alabama Department of Environmental Management, Laboratory ID No. 40150 (Drinking Water by Reciprocity with FL) Arizona Department of Health Services, Lab ID No. AZ0589 (Hazardous Waste & Wastewater) Arkansas Department of Pollution Control and Ecology, (No Laboratory ID No. assigned by state) (Environmental) State of California, Department of Health Services, Laboratory ID No. 2338 (Hazardous Waste and Wastewater) State of Connecticut, Department of Health Services, Connecticut Lab Approval No. PH-0697 (Drinking Water, Hazardous Waste and Wastewater) Delaware Health & Social Services, Division of Public Health, Laboratory ID No. FL094 (Drinking Water by Reciprocity with FL) Florida DOH Laboratory ID No. E81010 (Drinking Water, Hazardous Waste and Wastewater) Florida, Radioactive Materials License No. G0733-1 Foreign Soil Permit, Permit No. S-37599 Kansas Department of Health & Environment, Laboratory ID No. E10253 (Wastewater and Hazardous Waste) Commonwealth of Kentucky, Natural Resources and Environmental Protection Cabinet, Laboratory ID No. 90043 (Drinking Water) State of Louisiana, DHH, Office of Public Health Division of Laboratories, Laboratory ID No. LA000017 (Drinking Water) State of Maryland, DH&MH Laboratory ID No. 233 (Drinking Water by Reciprocity with Florida) Commonwealth of Massachusetts, DEP, Laboratory ID No. M-FL094 (Hazardous Waste and Wastewater) State of Michigan, Bureau of E&OccH, Laboratory ID No.9912 (Drinking Water by Reciprocity with Florida) New Hampshire DES ELAP, Laboratory ID No. 250599A (Wastewater) State of New Jersey, Department of Environmental Protection & Energy, Laboratory ID No. 49006 (Wastewate and Hazardous Waster) New York State, Department of Health, Laboratory ID No. 11503 (Wastewater and Solids/Hazardous Waste) North Carolina Department of Environment & Natural Resources, Laboratory ID No. 314 (Hazardous Waste and Wastewater) North Dakota DH&Consol Labs, Laboratory ID No. R-108 (Hazardous Waste and Wastewater by Reciprocity with Florida) State of Oklahoma, Oklahoma Department of Environmental Quality, Laboratory ID No. 9810 (Hazardous Waste and Wastewater) Commonwealth of Pennsylvania, Department of Environmental Resources, Laboratory ID No. 68-467 (Drinking Water) South Carolina DH&EC, Laboratory ID No. 96026 (Wastewater by Reciprocity with FL and Solids/Hazardous Waste by Reciprocity with CA) Tennessee Department of Health & Environment, Laboratory ID No. 02907 (Drinking Water) Tennessee Division of Underground Storage Tanks Approved Laboratory Virginia Department of General Services, Laboratory ID No. 00008 (Drinking Water by Reciprocity with FL) State of Washington, Department of Ecology, Laboratory ID No. C282 (Hazardous Waste and Wastewater) West Virginia Division of Environmental Protection, Office of Water Resources, Laboratory ID No. 136 (Hazardous Waste and Wastewater by Reciprocity with FL) American Industrial Hygiene Association (AIHA) Accredited Laboratory, Laboratory ID No. 100704 \text{\text{word\text{\centure}}} vord\text{\text{certlist\text{\centure}}} revised 07/13/00 ## Severn Trent Laboratories of Florida PROJECT SAMPLE INSPECTION FORM | Lab | Order #: | C0075 | 43A | | | | Date Received: 7 | 25/0. | <u>) </u> | | |-----------------------|---|----------------|---------|--------------|-------|-------------|---|----------------|--|-------------| | 1. | Was there a Chain | of Custody? | Yes | No⁴ | | 8. | Were samples checked for preservative? (Check pH of all H ₂ O requiring preservative (STL-PN SOP 917) except VOA vials that require zero | Yes | No⁴ | N/A | | 2. | Was Chain of Cust filled out and reling | | Yes | No* | | 9. | headspace)* Is there sufficient volume for analysis requested? | YES | No* | N/A
(Car | | 3. | Were samples reco
(Criteria: 2° - 6°C: 5 | eived cold? | Yes | No⁴ | N/A | 10. | Were samples received within Holding Time? (REFER TO STL-SOP 1040) | Yes | No* | , - | | 4 . 5 . | Were all samples plabeled and identification Did samples required | ed? | Yes* | No⁴
(No \ | | 11. | Is Headspace visible > ½" in diameter in VOA vials?* If any headspace is evident, comment | Yes* | No | N/A | | | compositing*? Req By: PM Clie | ent Other* | | | | | in out-of-control section. | | | | | | Were samples reconnected containers for analy requested? | eived in prope | Yes | No* | | 12. | If sent, were matrix spike bottles returned? | s Yes | No⁴ | NVA | | 7. | Were all sample correceived intact? | ontainers | Yes | No* | | 13. | Was Project Manager notified or problems? (initials:) | | No* | N/A | | Airb | oill Number(s): | Wa | lkin | | | | Shipped By: Wo | elkin | | | | Coo | ler Number(s): | C | ient | | | | Shipping Charges: | ala | 4 | | | Coo | ler Weight(s): | | NIA | | | | Cooler Temp(s) (°C):_ | 30
CCK4 | <u>ه</u> ر | | | | | | | | | | (LIST THERMOMETER NUMBER(S) FOR VERI | | | | | Out | of Control Eve | nts and Ins | pection | Com | ments | s <i>:</i> | | | | | | | 0 | • 1 | | | 0 | 1 1 | | 7/25/0 | 50 | | | <u> 4</u> | · both so | il son | ples ! | are | lo | bele | l or 8-01. Pec | 417 | 1/25/ | 00 | <u></u> | | | | | | | | | | , | , | | (USE BACK OF PSIFFOR ADDITIONAL NOTE: | | s) (3 7 | | | Insp | ected By: <u>//</u> | 145 | Date: | 7/25 | 5/00 | _Log | ged By:Date | :_ <i>_7/.</i> | <u>25/0</u> | <u>0</u> | | | | | | | | | | | | | - Note all Out-of-Control and/or questionable events on Comment Section of this form. - If Other, note who requested the splitting or compositing of samples on the Comment Section of this form. All volatile samples requested to be split or composited must be done in the Volatile Lab. Document: "Volatile sample values may be compromised due to sample splitting (compositing)" - + All preservatives for the State of North Carolina, the State of New York, and other requested samples are to be recorded on the sheet provided to record pH results (STL-SOP 938, section 2.2.9). - * According to EPA, %" of headspace is allowed in 40 ml vials requiring volatile analysis, however, STL makes it policy to record any headspace as outof-control (STL-SOP 938, section 2.2.12). | | Printed > | Printed N | 50811 | Printed 1 | | Scott | 10 | و | œ | 7 | o, | 5 | [- | U U | ы | <u> </u> | Wall a | Γ | McElveen | PKO | Site 15 | PROJ | NAS | PKOJ | * 11/1 | |-----------------------------|-----------------------------|-----------------------------|---------------|----------------------------|--------------|---|----|---|---|---|----|----|--------------|-----------------------|-----------------------|------------------------|---|--|--|---|--|--|---|--|--| | | Printed Name and Signature: | Printed Name and Signature: | 11 Darbur SAM | rinted Name and
Signature: | nioni jag 2. | Scott Dumbar, CH2M Hill Constructors, Inc. | | | | | | | | 20000724-Site 15-B-02 | 20000724-Site 15-B-01 | 20000724-Site 15-EB-01 | ¹⁸ SAMPLE IDENTIFIER | | McElypen | PROBECT CONTACT: | 9 | PROJECT PHASE/SITE/TASK: | NAS Whiting Field | PROJECT NAME: | CH2MIHILL | | | | | Cumber | orien bi | אן מקודה שע | est) | | | | - | | | | Excavation bottom | Excavation bottom | Equipment blank | ³ SAMPLE DESCRIPTION/LOCATION | | 850.983.3990 (Fax) | PROJECT TEL NO AND FAX NO. | CIO-0011 | CTO OR DO NUMBER: | 151168 | PROJECT NUMBER: | 115 Perioretar Ceretar Piece, Suite 700
Alliante, GA 50046-1278
Tel fet: (770) 804-9182
Fay fet: (770) 804-9282 | | | | | 7 | | | COURT | | | | | | | | S | S | * | ³⁶ MATRIX
(see codes on SOP) | | (Fax) | TAB T | 1514 | LAB R | Sever | LAB X | જ | | | | | 7-25-00 | DAIE | 7440 | ER AND SHIPE | | | | | | | | 07/24/00 | 07/24/00 | 07/24/00 | ²¹ DATE
COLLECTED | | 4.1001 (Pac | LAB TEL NO AND FAX NO | | LAB PO NUMBER: | Trent Lab | LAB NAME AND CONTACT | 845CQ) | | | | | | | | COURIER AND SHIPPING NUMBER: | | | | | | | | 16:18 | 16:18 | 14:40 | ²² TIME
COLLECTED | | 850.4/4.1001 (Phone) 850.4/4.4/89
(Fax) | X NO: | | | Severn Trent Laboratories, Carolynn | TACT: | | | | | | 1645 | ADML | | | | | | | | | | С | c | С | 28 DATA PKG LEVEL
(800 codes on SOP) | | 4.4789 | | | | arolym | | HAIN-OF-CUSTOD | | _ | 7 | Pri | 9) | <u>"</u> | | | | | | | | | | 7 | 7 | 7 | ²⁴ TAT
(calcudar daya) | | - | RE I | | HE I | | RE. | 9 | | antimotic file and allowers | ind Vanne | Printed Name | 2 | med Verne | | | | | | | | | | × | × | × | 6010B (Arsenic) | | ha Cus | 12 FAX AND MAIL REPORTS/EDD TO:: RECIPIENT 3 (Name and Company) | Lisa Schwan, CH2M Hill, C | FAX AND MAIL REPORTS/EDD TO::
ECIPIENT 2 (Name and Company) | Scott Dunbar, CH2M Hill, Constructors, Inc. | FAX AND MAIL REPORTS/EDD TO:: RECIPIENT 1 (Name and Company) | Ċ | | | and Signal | Name and Signature | 2 | and Signa | | | | | | | | | | | | | | 23 ANAL | tance, (| MAIL RE | an, CH | MAIL RE
LOYame s | bar, C | MAIL RE
LOName a | US | | Ā | | ine | 8 | Trans. | | | | | | | | | | | | | | SES REC | H2.M | PORTS/E/ | 2M HI | ORTS/EI | 12M H | PORTS/E/ | 0 | | | | | n | | | | | _ | | | | | | | | | | UIRED (I | EE, Co | :יסדמכ | ll, Cons | DTO: | III, Con | ייסדיםכ
מאמ | | | | | | | " RECEIVED BY | | | | | | | | | | | | | | nchude Me | nstruct | | onstructors, Inc. | | structo | | R | | | | | 1 R | DBY | - | 32 | | | | | | | | | | | | ANALYSES REQUIRED (Include Method Numbers) | ors, Inc | | s, Inc. | | ra, Inc. | | 00 | | | | | | | | APLES TE | | | | | | | | | | | | berrs) | | | 115 P
Phon | :: REC | OIC,
3257 | "A REC | Y RECORD | | | | | SPE | | | MPERAT | | | | | | | | | | | | | erimeta
e=770-c | PIENT 3 | erimetı
==770-(| PENT 2 | PWD, | PIENT I | | | | | | EUTPERMAN | | 3.000 | URE AND CONDI | | | | | | | | Grab | Grab | QC | ³⁵ SAMPLE TYPE | | er Center Plac
04-9182 Fax= | "6 RECIPIENT 3 (Address, Tel No., and Fax No.): | r Center Plac
04-9182 Fax | RECIPIENT 2 (Address, Tel No. , and Fax No.): | VAS Whiting =805,983,139 | RECIPIENT 1 (Address, Tel No., and Fax No.): | | | | | | 7/25/00 | DATE | 1 | " SAMPLES TEMPERATURE AND CONDITION UPON RECEIPT (for 1981s 1840) | | | | | | | | Preseved @ 4C | Preseved @ 4C | Preseved @ 4C
HNO3 | ²⁷ COMMENTS/
SCREENING READINGS | | 115 Perimeter Center Place, N.E., Suite 700, Atlanta, Ga. 30346
Phone=770-604-9182 Fax=770.604.9996 | and Fax No.): | 11S Perimeter Center Place, N.E., Suite 700, Atlanta, Ga. 30346
Phone=770-604-9182 Fax=770.604.9181 | and Fax No.): | OIC, PWD, NAS Whiting Field, 7151 USS Wasp St. Milton, Fl. 32570 Phone=805.983.1399 Fax =983.3990 | and Fax No.): | 15116 | | | | | 8 | Ē | t 400 | EIPT (for lab's u | | | | | | | | @4C | @ 4 C | @ 4C &
)3 | ENTS/
READINCES | | 700, Atlanta | | 700, Atlanta | | SS Wasp St | | COC NUMBER: | | | | | 747 | TIME | | se): | | | | | | 41 | The state of | 3 2 | 1 2 | 1 3 | 26 LAB ID
(for lab's use) | | , Ga. 30346 | | ւ, Ga. 30346 | | t. Milton, Fl. | | 24-01 | #### - COVER PAGE - #### INORGANIC ANALYSIS DATA PACKAGE SDG No.: 7543 Method Type: SW 846 SAS No.: N/A Contract: N/A Lab Code: STL PEN Case No.: N/A | Lab Sample ID | Client Sample ID | |---------------|------------------------| | C007543-1 | 20000724-SITE 15-B-01 | | C007543-2 | 20000724-SITE 15-B-02 | | C007543-3 | 20000724-SITE 15-EB-01 | Were ICP interelement corrections applied ? Yes/No Yes Were ICP background corrections applied ? Yes/No Yes If yes - were raw data generated before application of background corrections? Yes/No No #### Comments: Client: N/A This data package contains soil sample and equipment blank results for arsenic for laboratory order number C007543. Analysis of these samples was done in accordance with EPA SW846 method for ICP (6010B), and reported using EPA SW846 inorganic reporting forms and STL-PN reporting limits. STL-PN reporting limits are listed under the RDL column on Form 10. All duplicate results reported on form 6 are the matrix spike and matrix spike duplicate (MS/MSD) results. The acceptance limit for the duplicate is ±20%. The analytical runs for the equipment blank was prepped and analyzed in STL Batch Number PW247. The QC information for this batch is not included in this data package. #### ICP: Standards used to calibrate the ICP are custom blends purchased from High Purity. The CRI standard analyzed at the beginning of this run are at concentrations equal to STL-PN reporting limits. No other problems were encountered with the analysis of these samples. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and (if applicable) in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Marty Edwards Date: 08/21/00 Title: Metals Supervisor #### - 1 -INORGANIC ANALYSIS DATA PACKAGE | Contract: N/A | <u> </u> | | | | | | 0724-SITE 15-B-01 | | |-----------------------|---------------|--------------|---------|----------|-------|-----------|-------------------|-------------------| | | | Lab Co | de: | STL PI | EN | Case No.: | N/A | SAS No.: N/A | | Matrix: SOIL | Date R | eceive d: _7 | 7/25/00 | | Level | : | W-04-4-4 | | | % Solids: 97.5 | | | | | | | | | | CAS No. Analyte | Concentration | Units | С | Qual | М | DL | Instrument ID | Analytical
Run | | 40-38-2 Arsenic | 1.4 | mg/Kg | | | P | 0.29 | TJA61E Trace | TJULY27A | | Color Before: | | Clarity | Befor | ·e: | | | Texture: | | | Color After: | | Clarity | After | <u> </u> | | | Artifacts: | | #### - 1 -INORGANIC ANALYSIS DATA PACKAGE | Sample ID: C007543-2 | | C | ient ID: 2000 | 0724-SITE 15-B-02 | | |-----------------------------|-------------------------------|-------------|---------------|-------------------|-------------------| | Contract: N/A | Lab Code: | STL PEN | _ Case No. | : N/A | SAS No.: N/A | | Matrix: SOIL | Date Received: 7/25/00 | L | evel: | | | | % Solids: 97.1 |] | | | | | | AS No. Analyte C | oncentration Units C | Qual | M DL | Instrument ID | Analytical
Run | | 0-38-2 Arsenic | 1.3 mg/Kg |] | 0.28 | TJA61E Trace | TJULY27A | | Color Before: | Clarity Befor | ·e <u>:</u> | | Texture: | | | Color After: | Clarity After | . | | Artifacts: | | | | | | | | | | Comments: | | | | | | ### - 1 -INORGANIC ANALYSIS DATA PACKAGE | Sample ID: C007543- | 3 | | | Client | ID: 20000 | 724-SITE 15-EB-01 | | |----------------------------|---------------|-----------------|-----------------------|--------|------------------|-------------------|-------------------| | Contract: N/A | | Lab Code: | STL P | EN C | Case No.: | N/A | SAS No.: N/A | | Matrix: WATER % Solids: | Date R | Receive d: 7/25 | /00 | Level: | | | | | CAS No. Analyte | Concentration | Units C | Qual | M | DL | Instrument ID | Analytical
Run | | 40-38-2 Arsenic | 3.0 | ug/L | U | P | 3.0 | TJA61E Trace | TJULY27A | | Color Before: | | · | fore <u>:</u>
ter: | | | | | | | | | | | | | | ## METALS - 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION | Client: N/A | SDG No.: 754 | 43 | |-------------|---------------------|----| | | SDG 1101. 75 | | Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A Initial Calibration Source: CPI Continuing Calibration Source: __CPI | | | | | % | Acceptance | | Analysis | Analysis | Run | |--------|-----------|--------|------------|----------|--------------|--------|----------|----------|----------| | Sample | D Analyte | Result | True Value | Recovery | Window (%R) | M | Date | Time | Number | | | | | | | | - | | | | | ICV1 | | | | | | | | | | | 1011 | Aluminum | 9933 | 10000 | 99.3 | 90.0 - 110.0 | P | 7/27/00 | 10:13 | TJULY27A | | | Arsenic | 997 | 1000 | 99.7 | 90.0 - 110.0 | P | 7/27/00 | 10:13 | TJULY27A | | | Calcium | 10151 | 10000 | 101.5 | 90.0 - 110.0 | P | 7/27/00 | 10:13 | TJULY27A | | | Iron | 10117 | 10000 | 101.2 | 90.0 - 110.0 | P | 7/27/00 | 10:13 | TJULY27A | | | Magnesium | 10032 | 10000 | 100.3 | 90.0 - 110.0 | P | 7/27/00 | 10:13 | TJULY27A | | | | | | | | | | | | | CCV1 | | | | | | | | | | | | Aluminum | 10048 | 10000 | 100.5 | 90.0 - 110.0 | P | 7/27/00 | 10:53 | TJULY27A | | | Arsenic | 1000 | 1000 | 100.0 | 90.0 - 110.0 | P | 7/27/00 | 10:53 | TJULY27A | | | Calcium | 10320 | 10000 | 103.2 | 90.0 - 110.0 | P | 7/27/00 | 10:53 | TJULY27A | | | Iron | 10176 | 10000 | 101.8 | 90.0 - 110.0 | P | 7/27/00 | 10:53 | TJULY27A | | | Magnesium | 10191 | 10000 | 101.9 | 90.0 - 110.0 | P | 7/27/00 | 10:53 | TJULY27A | | | | | | | | | | | | | CCV2 | Aluminum | 10052 | 10000 | 100.5 | 90.0 - 110.0 | P | 7/27/00 | 11:54 | TJULY27A | | | Arsenic | 10032 | 10000 | 100.3 | 90.0 - 110.0 |
r
P | 7/27/00 | | | | | Calcium | 1001 | 1000 | 100.1 | | | | 11:54 | TJULY27A | | | | 10242 | 10000 | 102.4 | 90.0 - 110.0 | P | 7/27/00 | 11:54 | TJULY27A | | | Iron | | | | 90.0 - 110.0 | P | 7/27/00 | 11:54 | TJULY27A | | | Magnesium | 10135 | 10000 | 101.3 | 90.0 - 110.0 | P | 7/27/00 | 11:54 | TJULY27A | | CCV3 | | | | | | | | | | | CCVS | Aluminum | 10040 | 10000 | 100.4 | 90.0 - 110.0 | P | 7/27/00 | 12:55 | TJULY27A | | | Arsenic | 1003 | 1000 | 100.3 | 90.0 - 110.0 | P | 7/27/00 | 12:55 | TJULY27A | | | Calcium | 10311 | 10000 | 103.1 | 90.0 - 110.0 | P | 7/27/00 | 12:55 | TJULY27A | | | Iron | 10184 | 10000 | 101.8 | 90.0 - 110.0 | P | 7/27/00 | 12:55 | TJULY27A | | | Magnesium | 10193 | 10000 | 101.9 | 90.0 - 110.0 | P | 7/27/00 | 12:55 | TJULY27A | | | · · | | | | | | | | | | CCV4 | | | | | | | | | | | | Aluminum | 10033 | 10000 | 100.3 | 90.0 - 110.0 | P | 7/27/00 | 13:55 | TJULY27A | | | Arsenic | 1020 | 1000 | 102.0 | 90.0 - 110.0 | P | 7/27/00 | 13:55 | TJULY27A | | | Calcium | 10394 | 10000 | 103.9 | 90.0 - 110.0 | P | 7/27/00 | 13:55 | TJULY27A | | | Iron | 10346 | 10000 | 103.5 | 90.0 - 110.0 | P | 7/27/00 | 13:55 | TJULY27A | | | Magnesium | 10313 | 10000 | 103.1 | 90.0 - 110.0 | P | 7/27/00 | 13:55 | TJULY27A | | | | | | | | | | | | #### - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION Client: N/A SDG No.: 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A Initial Calibration Source: CPI Continuing Calibration Source: <u>CPI</u> | Sample | ID Analyte | Result | True Value | %
Recovery | Acceptance
Window (%R) | M | Analysis
Date | Analysis
Time | Run
Number | |--------|------------|--------|------------|---------------|---------------------------|---|------------------|-------------------------|---------------| | CCV5 | | | | | | | | | | | CCVS | Aluminum | 10040 | 10000 | 100.4 | 90.0 - 110.0 | P | 7/27/00 | 14:56 | TJULY27A | | | Arsenic | 1017 | 1000 | 101.7 | 90.0 - 110.0 | P | 7/27/00 | 14:56 | TJULY27A | | | Calcium | 10451 | 10000 | 104.5 | 90.0 - 110.0 | P | 7/27/00 | 14.56
14: 5 6 | TJULY27A | | | Iron | 10374 | 10000 | 104.3 | 90.0 - 110.0 | P | 7/27/00 | 14:56 | TJULY27A | | | Magnesium | 10363 | 10000 | 103.6 | 90.0 - 110.0 | P | 7/27/00 | 14:56 | TJULY27A | | CCV6 | | | | | | | | | | | | Aluminum | 10298 | 10000 | 103.0 | 90.0 - 110.0 | P | 7/27/00 | 15:21 | TJULY27A | | | Arsenic | 1024 | 1000 | 102.4 | 90.0 - 110.0 | P | 7/27/00 | 15:21 | TJULY27A | | | Calcium | 10851 | 10000 | 108.5 | 90.0 ~ 110.0 | P | 7/27/00 | 15:21 | TJULY27A | | | Iron | 10573 | 10000 | 105.7 | 90.0 - 110.0 | P | 7/27/00 | 15:21 | TJULY27A | | | Magnesium | 10713 | 10000 | 107.1 | 90.0 - 110.0 | P | 7/27/00 | 15:21 | TJULY27A | ## METALS - 2b CRDL STANDARD FOR AA & ICP | Client: N/A | SDG No.: <u>7543</u> | | | | | |---------------|-----------------------------|--------------|--|--|--| | Contract: N/A | Case No.: N/A | SAS No.: N/A | | | | AA CRDL Standard Source: **ICP CRDL Standard Source:** | Sample | ID Analyte | Result | True Value | %
Recovery | Advisory
Limits (%R) | M | Analysis
Date | Analysis
Time | Run
Number | |--------|------------|--------|------------|---------------|-------------------------|---|------------------|------------------|---------------| | | | | | | | | | | | | CRDL1 | | | | | | | | | | | | Aluminum | 112 | 100 | 112.0 | 50 - 150 | P | 7/27/00 | 10:23 | TJULY27A | | | Arsenic | 6.50 | 5.00 | 130.0 | 50 - 150 | P | 7/27/00 | 10:23 | TJULY27A | | | Calcium | 1057 | 500 | 211.4 | 50 - 150 | P | 7/27/00 | 10:23 | TJULY27A | | | Iron | 113 | 100 | 113.0 | 50 - 150 | P | 7/27/00 | 10:23 | TJULY27A | | | Magnesium | 516 | 500 | 103.2 | 50 - 150 | P | 7/27/00 | 10:23 | TJULY27A | | CRDL2 | | | | | | | | | | | | Aluminum | 124 | 100 | 124.0 | 50 - 150 | P | 7/27/00 | 15:06 | TJULY27A | | | Arsenic | 7.41 | 5.00 | 148.2 | 50 - 150 | P | 7/27/00 | 15:06 | TJULY27A | | | Calcium | 1075 | 500 | 215.0 | 50 - 150 | P | 7/27/00 | 15:06 | TJULY27A | | | Iron | 129 | 100 | 129.0 | 50 - 150 | P | 7/27/00 | 15:06 | TJULY27A | | | Magnesium | 523 | 500 | 104.6 | 50 - 150 | P | 7/27/00 | 15:06 | TJULY27A | ## METALS - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY Client: N/A **SDG No.:** 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A | Sample | ID Analyte | Result | Acceptance
Limit | Conc
Qual | MDL | RDL | M | Analysis | - | Run | |--------|------------|--------|---------------------|--------------|------|--------|---|----------|-------|----------| | Sample | Allaryte | Result | Lillit | Quai | | | M | Date | Time | - Itali | | ICB1 | | | | | | | | | | | | ICD1 | Aluminum | 11.2 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 10:18 | TJULY27A | | | Arsenic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 10:18 | TJULY27A | | | Calcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 10:18 | TJULY27A | | | Iron | 20.0 | +/-4000.00 | U | 20.0 | 4000.0 | P | 7/27/00 | 10:18 | TJULY27A | | | Magnesium | 13.38 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 10:18 | TJULY27A | | CCB1 | | | | | | | | | | | | | Aluminum | 24.6 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 10:59 | TJULY27A | | | Arsenic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 10:59 | TJULY27A | | | Calcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 10:59 | TJULY27A | | | Iron | 22.9 | +/-4000.00 | В | 20.0 | 4000.0 | P | 7/27/00 | 10:59 | TJULY27A | | | Magnesium | 24.38 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 10:59 | TJULY27A | | CCB2 | | | | | | | | | | | | | Aluminum | 24.9 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 11:59 | TJULY27A | | | Arsenic | 3.01 | +/-5.00 | В | 3.00 | 5.00 | P | 7/27/00 | 11:59 | TJULY27A | | | Calcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 11:59 | TJULY27A | | | Iron | 22.5 | +/-4000.00 | В | 20.0 | 4000.0 | P | 7/27/00 | 11:59 | TJULY27A | | | Magnesium | 30.03 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 11:59 | TJULY27A | | CCB3 | | | | | | | | | | | | | Aluminum | 29.5 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 13:00 | TJULY27A | | | Arsenic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 13:00 | TJULY27A | | | Calcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 13:00 | TJULY27A | | | Iron | 22.9 | +/-4000.00 | В | 20.0 | 4000.0 | P | 7/27/00 | 13:00 | TJULY27A | | | Magnesium | 23.62 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 13:00 | TJULY27A | | CCB4 | | | | | | | | | | | | | Aluminum | 22.7 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 14:00 | TJULY27A | | | Arsenic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 14:00 | TJULY27A | | | Calcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 14:00 | TJULY27A | | | Iron | 20.0 | +/-4000.00 | U | 20.0 | 4000.0 | P | 7/27/00 | 14:00 | TJULY27A | | | Magnesium | 12.24 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 14:00 | TJULY27A | # METALS - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY Client: N/A **SDG No.:** 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A | Sample ID | Analyte | Result | Acceptance
Limit | Conc
Qual | MDL | RDL | M | Analysis
Date | Analysis
Time | Run | |-----------|----------|--------|---------------------|--------------|------|--------|---|------------------|------------------|----------| | CCB5 | | | | | | | | | | | | Alı | uminum | 31.9 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 15:01 | TJULY27A | | Ar | senic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 15:01 | TJULY27A | | Ca | lcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 15:01 | TJULY27A | | Iro | n | 25.9 | +/-4000.00 | В | 20.0 | 4000.0 | P | 7/27/00 | 15:01 | TJULY27A | | Ma | agnesium | 14.18 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 15:01 | TJULY27A | | ССВ6 | | | | | | | | | | | | Alı | uminum | 75.7 | +/-100.00 | В | 10.0 | 100.0 | P | 7/27/00 | 15:26 | TJULY27A | | Ar | senic | 3.00 | +/-5.00 | U | 3.00 | 5.00 | P | 7/27/00 | 15:26 | TJULY27A | | Cal | lcium | 70.0 | +/-500.00 | U | 70.0 | 500.0 | P | 7/27/00 | 15:26 | TJULY27A | | Iro | n | 38.2 | +/-4000.00 | В | 20.0 | 4000.0 | P | 7/27/00 | 15:26 | TJULY27A | | Ma | agnesium | 58.77 | +/-500.00 | В | 6.00 | 500.00 | P | 7/27/00 | 15:26 | TJULY27A | #### **METALS** - 3b -PREPARATION BLANK SUMMARY Client: N/A **SDG No.:** <u>7543</u> Contract: N/A Lab Code: STL PEN Case No.: N/A | Sample ID | Analyte | Result
(mg/Kg) | Acceptance
Limit | Conc
Qual | MDL | RDL | M | Analysis
Date | Analysis
Time | Run | |-----------|---------|-------------------|---------------------|--------------|------|------|---|------------------|------------------|----------| | PBSPS145 | senic | 0.30 | SOIL +/-0.50 | U | 0.30 | 0.50 | P | 7/27/00 | 14:16 | TJULY27A | ### **METALS** -4-INTERFERENCE CHECK SAMPLE Client: N/A **SDG No.:** 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A ICS Source: HIGH PURITY Instrument TJA61E Trace D: | Sample ID | Analyte | Result | True Value | %
Recovery | Acceptance
Window
%Rec | Analysis
Date | Analysis
Time | Run
Number | |-----------|-----------|----------|------------|---------------|------------------------------|------------------|------------------|---------------| | ICS-A1 | | | | | | | | | | | Aluminum | 519820.8 | 500000.0 | 104.0 | 80 - 120 | 7/27/ 00 | 10:39 | TJULY27A | | | Arsenic | 4.2 | | | 80 - 120 | 7/27/00 | 10:39 | TJULY27A | | | Calcium | 446720.1 | 500000.0 | 89.3 | 80 - 120 | 7/27/00 | 10:39 | TJULY27A | | | Iron | 198550.5 | 200000.0 | 99.3 | 80 - 120 | 7/27/00 | 10:39 | TJULY27A | | | Magnesium | 548513.8 | 500000.0 | 109.7 | 80 - 120 | 7/27/00 | 10:39 | TJULY27A | | ICS-AB1 | | | | | | | | | | | Aluminum | 532326.9 | 510000.0 | 104.4 | 80 - 120 | 7/27/00 | 10:44 | TJULY27A | | | Arsenic | 1053.6 | 1000.0 | 105.4 | 80 - 120 | 7/27/00 | 10:44 | TJULY27A | | | Calcium | 453604.6 | 510000.0 | 88.9 | 80 - 120 | 7/27/00 | 10:44 | TJULY27A | | | Iron | 208174.0 | 210000.0 | 99.1 | 80 - 120 | 7/27/00 |
10:44 | TJULY27A | | | Magnesium | 559165.4 | 510000.0 | 109.6 | 80 - 120 | 7/27/00 | 10:44 | TJULY27A | | ICS-A2 | | | | | | | | | | | Aluminum | 520713.8 | 500000.0 | 104.1 | 80 - 120 | 7/27/00 | 15:11 | TJULY27A | | | Arsenic | 2.1 | | | 80 - 120 | 7/27/00 | 15:11 | TJULY27A | | , | Calcium | 456279.5 | 500000.0 | 91.3 | 80 - 120 | 7/27/00 | 15:11 | TJULY27A | | | Iron | 202000.7 | 200000.0 | 101.0 | 80 - 120 | 7/27/00 | 15:11 | TJULY27A | | | Magnesium | 561779.7 | 500000.0 | 112.4 | 80 - 120 | 7/27/00 | 15:11 | TJULY27A | | ICS-AB2 | | | | | | | | | | | Aluminum | 535027.4 | 510000.0 | 104.9 | 80 - 120 | 7/27/00 | 15:16 | TJULY27A | | | Arsenic | 1074.4 | 1000.0 | 107.4 | 80 - 120 | 7/27/00 | 15:16 | TJULY27A | | • | Calcium | 467412.5 | 510000.0 | 91.6 | 80 - 120 | 7/27/00 | 15:16 | TJULY27A | | | Iron | 213489.6 | 210000.0 | 101.7 | 80 - 120 | 7/27/00 | 15:16 | TJULY27A | | | Magnesium | 576964.5 | 510000.0 | 113.1 | 80 - 120 | 7/27/00 | 15:16 | TJULY27A | - 5a - #### MATRIX SPIKE SUMMARY | Client: 1 | Client: N/A | | | Level: | | | | SDG No.: | | | | | | |-----------|---|------------------------|------------------|------------------------------|------------------|---|----------------|-----------------------------------|------|-------------|--|--|--| | Contract | t: <u>N/A</u> | | Lab | Code: | STL PEN | | Case No.: | N/A | SA | AS No.: N/A | | | | | Matrix: | *************************************** | | | Sample ID: C007543-1 | | | | Client ID: 20000724-SITE 15-B-01S | | | | | | | Percent | Percent Solids for Sample: 97.50 | | | Spiked ID: C007543-1S | | | cent Solids | 7.50 | | | | | | | Analyte | Units | Acceptance
Limit %R | Spiked
Result | C | Sample
Result | C | Spike
Added | %
Recovery | Qual | M | | | | | Arsenic | mg/Kg | 75 - 125 | 89.79 | | 1.36 | | 94.1 | 94.0 | - | Р | | | | - 5a - ## MATRIX SPIKE DUPLICATE SUMMARY | Client: N/A | | | Level: | | | | SDG No.:7543 | | | | | | |----------------------------------|---------------|------------------------|-------------------------------|-------|------------------|--|------------------------------------|---------------|------|---------------------------|----------------|--| | Contract | t: <u>N/A</u> | | Lab | Code: | STL PEN | | Case No.: | N/A | SA | AS No.: <u>N/A</u> | | | | Matrix: | SOIL | ~~~ | Sample ID: C 007543-1 | | | | Client ID: 20000724-SITE 15-B-01SD | | | | | | | Percent Solids for Sample: 97.50 | | | Spiked ID: C007543-1SD | | | Percent Solids for Spike Sample: 97.50 | | | | | | | | Analyte | Units | Acceptance
Limit %R | MSD
Result | С | Sample
Result | C | Spike
Added | %
Recovery | Qual | M | | | | Arsenic | mg/Kg | 75 - 125 | 92.50 | | 1.36 | | 97.7 | 93.3 | | P | _ _ | | - 5b - #### POST DIGEST SPIKE SUMMARY | Client: 1 | N/A | | | SDG No.: | | | | | | | | |-----------|---------------|------------------------|------------------|----------|------------------|-----------------------------------|----------------|---------------|------|---------------------|--| | Contract | N/A | | Lab | Code: | STL PEN | | Case No.: | N/A | _ S | AS No. : N/A | | | Matrix: | SOII | | Level: | - C007 | 7542 1 A | Client ID: 20000724-SITE 15-B-01A | | | | | | | Sample I | D: C00 | 7543-1 | Spiked II | : C007 | 7543-1A | | | | | | | | Analyte | Units | Acceptance
Limit %R | Spiked
Result | С | Sample
Result | С | Spike
Added | %
Recovery | Qual | M | | | Arsenic | ug/L | 75 - 125 | 936.41 | | 14.14 | | 1000.0 | 92.2 | | P | | - 6 - #### DUPLICATE SAMPLE SUMMARY | | | | DUILIC | | DUMIT THE SOL | TIVICAL | L | | | | | | |-------------|--------------|---------------------|------------------|---------------|---------------------|---------|-----------------|-----------|--------|----------------------------|--|--| | Client: N/A | Α | | _ Level: | | | SDG | SDG No.: 7543 | | | | | | | Contract: | N/A | *** | Lab Co | de: _ | STL PEN | Case | No.: <u>N/A</u> | . | _ | SAS No.: <u>N/A</u> | | | | Matrix: | SOIL | | _ Sample ID: | <u>C00′</u> | 7543-1S | Clier | nt ID: 2000 | 00724-SIT | E 15-1 | B-01SD | | | | Percent So | lids for Sai | nple: 97.50 | Duplicate II | D: C00 | 7543-1SD | Perc | ent Solids | for Dupl | icate | : 97.50 | | | | Analyte | Units | Acceptance
Limit | Sample
Result | C | Duplicate
Result | C | RPD | Qual | M | | | | | Arsenic | mg/Kg | | 89.79 | 9 | 92.50 | | 3.0 | | P | | | | #### - 7 -LABORATORY CONTROL SAMPLE SUMMARY | Client: N/A | | | | | SDG No.: 7543 | | | | | | | |---------------|-------------|--------|--------------|--------|----------------------|---------------|----------------------|---|--|--|--| | Contract: N/A | | Lab Co | ode: STL PEN | | Case No.:] | N/A | SAS No.: N/A | | | | | | Aqueous | LCS Source: | | | | Solid | LCS Source: | ERA | | | | | | Sample
ID | Analyte | Units | True Value | Result | С | %
Recovery | Acceptance
Limits | М | | | | | LCSSPS14 | 5 | | | | | * | | | | | | | | Arsenic | mg/Kg | 75.2 | 76.5 | | 101.7 | 55.9 - 94.5 | P | | | | -9- #### SERIAL DILUTION SAMPLE SUMMARY | Client: <u>N/A</u> | · · · · · · · · · · · · · · · · · · · | | SDG No.: <u>7543</u> | | | | | | | | | |--------------------|---------------------------------------|-------------|-----------------------------|------------------------------------|-----------------|----------|----------------------|-----------|--------------|--|--| | Contract: | N/A | | I | ab Co | de: STL PEN | | Case No.: N/A | | SAS No.: N/A | | | | Matrix: | WATER | ATER Level: | | Client ID: 20000724-SITE 15-B-011. | | | | | | | | | Sample ID: | C007543-1 | | | | | Serial 1 | Dilution ID: C | 007543-1L | | | | | Analyte | Initial
Result | С | Serial
Result | C | %
Difference | Qual | Acceptance
Limits | M | | | | | Arsenic | 14.14 | | 15.00 | U | 100.0 | | 10.00 % | P | | | | ## **METALS** - 10 -METHOD DETECTION LIMITS Client: N/A **SDG No.:** 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A | Analyte | Wave- length (nm) | MDL
ug/L | RDL
ug/L | |-------------|-------------------|-------------|----------------------| | JA61E Trace | | | Date: 1/27/00 | | Aluminum | 308.2 | 10.0 | 100.0 | | Arsenic | 189.0 | 3.00 | 5.00 | | Calcium | 317.9 | 70.0 | 500.0 | | Iron | 271.4 | 20.0 | 4000.0 | | Magnesium | 279.0 | 6.00 | 500.0 | ## METALS - 11 ICP INTERELEMENT CORRECTION FACTORS | Client: | N/A | SDG No.: | 7543 | |---------|-----|----------|------| | | | | | Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A Instrument ID: TJA61E Trace Date: 6/19/00 Interelement Correction Factors (apparent ppb analyte/ppm interferent) | | Wave-
Length | 10 | ICP Interelement Correction Factors For: | | | | | | | | | | | |------------|-----------------|------------|--|------------|-----------|----------|--|--|--|--|--|--|--| | Analyte | (nm) | Al | Ca | Fe | Mg | Cd | | | | | | | | | Aluminum | 308.21 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Antimony | 206.84 | 0.0000000 | 0.0000000 | 0.0000430 | 0.0000000 | 0.000000 | | | | | | | | | Arsenic | 193.60 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Barium | 455.40 | 0.0000000 | 0.0000000 | 0.0000030 | 0.0000000 | 0.000000 | | | | | | | | | Beryllium | 313.04 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Boron | 249.60 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Cadmium | 228.80 | 0.0000000 | 0.0000000 | 0.0000650 | 0.0000000 | 0.000000 | | | | | | | | | Calcium | 317.93 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Chromium | 267.71 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Cobalt | 228.61 | 0.0000000 | 0.0000000 | 0.0000140 | 0.0000000 | 0.000447 | | | | | | | | | Copper | 324.75 | 0.0000000 | 0.0000000 | -0.0000300 | 0.0000000 | 0.000000 | | | | | | | | | Iron | 259.90 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Iron | 271.40 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Lead | 220.351/1 | 0.0005560 | -0.0000300 | 0.0000520 | 0.0000000 | 0.000000 | | | | | | | | | Lead | 220.351/2 | -0.0002350 | 0.0000180 | 0.0000670 | 0.0000000 | 0.000000 | | | | | | | | | Magnesium | 279.07 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Manganese | 257.61 | 0.0000000 | 0.0000000 | 0.0000080 | 0.0000140 | 0.000000 | | | | | | | | | Molybdenum | 202.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Nickel | 231.60 | 0.0000000 | 0.0000000 | 0.0000160 | 0.0000000 | 0.000000 | | | | | | | | | Potassium | 766.49 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Selenium | 193.021/1 | -0.0000330 | 0.0000000 | 0.0000870 | 0.0000000 | 0.000000 | | | | | | | | | Selenium | 193.021/2 | 0.0000170 | 0.0000000 | -0.0001890 | 0.0000000 | 0.000000 | | | | | | | | | Silver | 328.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Sodium | 588.99 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Strontium | 421.55 | 0.0000000 | 0.0000340 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Thallium | 190.86 | -0.0000190 | 0.0000000 | 0.0002900 | 0.0000000 | 0.000000 | | | | | | | | | Tin | 189.98 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Titanium | 334.90 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | | | | | | Vanadium | 292.40 | 0.0000000 | 0.0000000 | -0.0002840 | 0.0000000 | 0.000000 | | | | | | | | | Zinc | 213.85 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000440 | 0.000000 | | | | | | | | #### **METALS** - 11 -ICP INTERELEMENT CORRECTION FACTORS | Client: | <u>N/A</u> | SDG No.: |
7543 | |---------|------------|----------|------| |---------|------------|----------|------| Case No.: N/A Contract: N/A _____Lab Code: STL PEN SAS No.: N/A Date: 6/19/00 **Instrument ID:** TJA61E Trace Interelement Correction Factors (apparent ppb analyte/ppm interferent) | | Wave-
Length | ICP Interelement Correction Factors For: | | | | | | | | | |------------|-----------------|--|------------|------------|------------|-----------|--|--|--|--| | Analyte | (nm) | Со | Cr | Mn | Mo | Ni | | | | | | Aluminum | 308.21 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0033650 | 0.0000000 | | | | | | Antimony | 206.84 | 0.0000000 | -0.0075390 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Arsenic | 193.60 | 0.0000000 | -0.0064820 | 0.0000000 | -0.0033180 | 0.0000000 | | | | | | Barium | 455,40 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Beryllium | 313.04 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Boron | 249.60 | 0.0000000 | 0.0002160 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Cadmium | 228.80 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0000600 | 0.0000000 | | | | | | Calcium | 317.93 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Chromium | 267.71 | 0.0000000 | | | | | | | | | | Cobalt | 228.61 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0013130 | 0.0001110 | | | | | | Copper | 324.75 | 0.0000000 | -0.0001140 | 0.0000000 | 0.0002060 | 0.0000000 | | | | | | Iron | 259.90 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Iron | 271.40 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Lead | 220,351/1 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0006350 | 0.0001050 | | | | | | Lead | 220.351/2 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0008980 | 0.0003060 | | | | | | Magnesium | 279.07 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Manganese | 257.61 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Molybdenum | 202.00 | 0.0000000 | 0.0000410 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Nickel | 231.60 | -0.0008980 | 0.0000000 | 0.0001170 | 0.0000000 | 0.0000000 | | | | | | Potassium | 766.49 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Selenium | 193.021/1 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Selenium | 193.021/2 | 0.0000000 | 0.0000000 | 0.0005340 | 0.0000000 | 0.0000000 | | | | | | Silver | 328.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Sodium | 588.99 | 0.0000000 | -0.0126670 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Strontium | 421.55 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Thallium | 190.86 | 0.0014260 | 0.0002080 | -0.0004580 | 0.0000000 | 0.0000000 | | | | | | Tin | 189.98 | 0.0000000 | -0.0000890 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Titanium | 334.90 | 0.0000000 | 0.0002140 | 0.0000000 | 0.0000000 | 0.0000000 | | | | | | Vanadium | 292.40 | 0.0000000 | -0.0012560 | 0.0000000 | -0.0001180 | 0.0000000 | | | | | | Zinc | 213.85 | 0.0000000 | -0.0007680 | 0.0000000 | 0.0002030 | 0.0000000 | | | | | ## METALS - 11 ICP INTERELEMENT CORRECTION FACTORS | Client: | N/A | SDG No.: | 7543 | |---------|-----|----------|------| | | | | | Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A Instrument ID: TJA61E Trace Date: 6/19/00 Interelement Correction Factors (apparent ppb analyte/ppm interferent) | | Wave-
Length | IC | CP Interelement | Correction Fac | ctors For: | | | | |------------|-----------------|-----------|--------------------------------------|----------------|------------|----------|--|--| | Analyte | (nm) | Sb | Ti | Tl | V | Zn | | | | Aluminum | 308.21 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0218830 | 0.000000 | | | | Antimony | 206.84 | 0.0000000 | 0.0000000 -0.0025860 0.0000000 0.000 | | | | | | | Arsenic | 193.60 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0000360 | 0.000000 | | | | Barium | 455.40 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Beryllium | 313.04 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0001820 | 0.000000 | | | | Boron | 249.60 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Cadmium | 228.80 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Calcium | 317.93 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Chromium | 267.71 | 0.0000000 | 0.0000000 | 0.0000000 | -0.0000740 | 0.000000 | | | | Cobalt | 228.61 | 0.0000000 | 0.0021650 | 0.0000000 | 0.0000000 | 0.000000 | | | | Copper | 324.75 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Iron | 259.90 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Iron | 271.40 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Lead | 220.351/1 | 0.0000000 | -0.0002040 | 0.0000000 | -0.0001380 | 0.000000 | | | | Lead | 220.351/2 | 0.0003950 | -0.0004050 | 0.0000000 | 0.0000000 | 0.000000 | | | | Magnesium | 279.07 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Manganese | 257.61 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Molybdenum | 202.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Nickel | 231.60 | 0.0000000 | 0.0000000 | 0.0002210 | 0.0000000 | 0.000000 | | | | Potassium | 766.49 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Selenium | 193.021/1 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0004580 | 0.000000 | | | | Selenium | 193.021/2 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Silver | 328.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Sodium | 588.99 | 0.0000000 | -0.1341330 | 0.0000000 | 0.0000000 | 0.054000 | | | | Strontium | 421.55 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Thallium | 190.86 | 0.0000000 | -0.0014490 | 0.0000000 | 0.0000000 | 0.000000 | | | | Tin | 189.98 | 0.0000000 | 0.0004580 | 0.0000000 | 0.0000000 | 0.000000 | | | | Titanium | 334.90 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | | Vanadium | 292.40 | 0.0000000 | 0.0005900 | 0.0000000 | 0.0000000 | 0.000000 | | | | Zinc | 213.85 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | | | - 12 - #### LINEAR RANGES Client: N/A SDG No.: 7543 Contract: N/A Lab Code: STL PEN Case No.: N/A SAS No.: N/A Instrument ID: TJA61E Trace Date: 6/6/00 | Analyte | Integration
Time
(sec) | LDR
ug/L | |-----------|------------------------------|-------------| | Aluminum | 15.00 | 500000 | | Arsenic | 15.00 | 50000 | | Calcium | 15.00 | 400000 | | Iron | 15.00 | 500000 | | Magnesium | 15.00 | 500000 | #### METALS - 13 -SAMPLE PREPARATION SUMMARY Client: N/A **SDG No.:** <u>7543</u> Contract: N/A Lab Code: STL PEN Method: P____ Case No.: N/A | Samuela ID | Client ID | Sample | | | Initial
Sample | Final
Sample
Volume | Percent | |----------------------|-------------------------|--------|--------|-----------|-------------------|---------------------------|---------| | Sample ID | , mar III | Туре | Matrix | Prep Date | Size(g) | (mL) | Solids | | Batch Number: | PS145 | | | | | | | | PBSPS145 | PBSPS145 | MB | SOIL | 7/26/00 | 1.00 | 100 | 100.00 | | LCSSPS145 | LCSSPS145 | LCS | SOIL | 7/26/00 | 1.05 | 100 | 100.00 | | C007543-1 | 20000724-SITE 15-B-01 | SAM | SOIL | 7/26/00 | 1.07 | 100 | 97.50 | | C007543-1S | 20000724-SITE 15-B-01S | MS | SOIL | 7/26/00 | 1.09 | 100 | 97.50 | | C007543-1SD | 20000724-SITE 15-B-01SD | MSD | SOIL | 7/26/00 | 1.05 | 100 | 97.50 | | C007543-2 | 20000724-SITE 15-B-02 | SAM | SOIL | 7/26/00 | 1.11 | 100 | 97.10 | #### METALS - 14 -ANALYSIS RUN LOG | Client: | N/A | Contract: N/A | |---------|-------|---------------| | | 21/22 | | | | | | Lab Code STL PEN Case No.: N/A SAS No.: N/A SDG 7543 Instrument ID Number: TJA61E Trace Method: P Run Number: TJULY27A Start Date: 7/27/00 End Date: 7/27/00 | | | | | 1 | | | | | | | | 2 | lna | 1 22 | te | | | | | | | | | | | | |---------------|------|-------|----------|--------|--------|---|--------|---|---|---|--------|---|-----|------|----|---|--------|--------|---|--------|--------|-----|--------|---|--------|---| | Sample
No. | D/F | Time | % R | A | A
S | | B
E | C | C | ı | C
O | С | F | ₽ | | М | H
G | N
I | ĸ | S
E | A
G | 1 1 | T
L | V | Z
N | | | CAL BLK | 1.00 | 09:58 | | х | х | | | T | x | | | | х | | x | | | | | | Ī | | | | Ħ | F | | STD 1 | 1.00 | 10:03 | | х | x | _ | | | x | | T | | х | | x | | | | | | | | | T | T | Г | | STD 1 | 1.00 | 10:08 | <u> </u> | х |
Х | - | | | x | | | | x | | x | | | | | | | | | j | T | | | ICV1 | 1.00 | 10:13 | | х | х | | | | х | | | | х | | х | | | | | | | | | | T | | | ICB1 | 1.00 | 10:18 | | х | х | | | | х | | | | х | Ī | х | | | | | | | | | T | T | | | CRDL1 | 1.00 | 10:23 | | х | x | | | | х | | | | х | j | х | | | | | | | | Ì | T | T | | | AL500 | 1.00 | 10:28 | | х | X | | | | x | | | | x | T | х | | | | | | | | | | T | | | FE500 | 1.00 | 10:34 | | х | x | | | | x | | | | x | Ť | x | | | | | | | | Ť | Ì | ヿ | | | ICS-A1 | 1.00 | 10:39 | <u> </u> | х | X | | | | х | | | | x | Ť | x | | | | | | | | | T | ヿ | | | ICS-AB1 | 1.00 | 10:44 | | х | x | | Г | | х | | | | x | İ | x | | | | | | | | j | T | 寸 | | | CCV1 | 1.00 | 10:53 | | х |
х | | | | х | | | | х | T | х | | | | | | | | | T | 寸 | | | CCB1 | 1.00 | 10:59 | | х |
х | | _ | | х | | | | х | | х | | | | | | | | i | T | T | | | ZZZZZZ | 1.00 | 11:04 | T | | ヿ゙ | _ | | ZZZZZZ | 1.00 | 11:09 | | | | | | | | | | | | T | | j | | | | | | | i | T | ヿ゙ | _ | | ZZZZZZ | 1.00 | 11:14 | | | | | | | | | | | | T | | | | | | | | | 寸 | İ | ヿ゙ | | | ZZZZZZ | 5.00 | 11:19 | | П | | | | | | | | | | 寸 | | T | | | | | | | j | T | ヿ | _ | | ZZZZZZ | 1.00 | 11:24 | | П | | | | | | | | | | j | | İ | | | | | | | i | Ť | T | | | ZZZZZZ | 1.00 | 11:29 | | П | | | | | | | | | | Ť | T | T | | |
| | | | | T | ヿ゙ | _ | | ZZZZZZ | 1.00 | 11:34 | | | | | | | | | | | | T | | T | | | | | | | Ì | T | ヿ゙ | _ | | ZZZZZZ | 1.00 | 11:39 | | \Box | | | | | | | | | T | j | T | | | | | | | | j | Ť | T | | | ZZZZZZ | 1.00 | 11:44 | | П | | | | | | | | | | j | | j | | | | | | İ | j | ĺ | Ť | _ | | ZZZZZZ | 1.00 | 11:49 | | | | | | | | | | | Ì | | | Ì | | | | | | | Ì | Ť | Ť | | | CCV2 | 1.00 | 11:54 | | х |
X | | | | х | | | | x | | х | | | | | | | | | | ٦ | | | CCB2 | 1.00 | 11:59 | | х | x | | | | х | | | | x | | х | | | | | | | | | | П | | | ZZZZZZ | 1.00 | 12:04 | Ī | \neg | | | ZZZZZZ | 1.00 | 12:09 | П | | | ZZZZZZ | 1.00 | 12:14 | П | | | ZZZZZZ | 1.00 | 12:19 | \Box | | | ZZZZZZ | 1.00 | 12:24 | ZZZZZZ | 1.00 | 12:29 | \Box | | | ZZZZZZ | 5.00 | 12:35 | ZZZZZZ | 1.00 | 12:40 | ZZZZZZ | 1.00 | 12:45 | ヿ゙ | | ^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14 #### METALS - 14 -ANALYSIS RUN LOG | Client: | N/A | Contract: N/A | |---------|-----|---------------| | | | | Lab Code STL PEN Case No.: N/A SAS No.: N/A SDG 7543 Instrument ID Number: TJA61E Trace Method: P Run Number: TJULY27A Start Date: 7/27/00 End Date: 7/27/00 | | | m.: | % R | Analytes |---------------|------|-------|-----|----------|--------|--------|---|--------|--------|---|---|--------|--------|--------|---|--------|--------|---|--------|---|--------|--------|--------|--------|--------|--------|---| | Sample
No. | D/F | Time | | A
L | S
B | A
S | 1 | B
E | C
D | | | С
0 | C
U | F
E | | M
G | M
N | ŀ | N
I | к | S
E | A
G | N
A | T
L | V | z
N | C | | ZZZZZZ | 1.00 | 12:50 | | | | | | | | | | | | | | | | | Ī | | | | | | П | П | | | CCV3 | 1.00 | 12:55 | | х | | х | | | | х | | | | х | | x | | | | | | | | | Π | Πİ | | | CCB3 | 1.00 | 13:00 | | х | | х | | | | х | | | | x | | x | | | | | | | | | T | Π | _ | | ZZZZZZ | 1.00 | 13:05 | Πİ | Πİ | | | ZZZZZZ | 1.00 | 13:10 | | | | | | | | | | | | | | | | | | Г | | | | | T | | | | ZZZZZZ | 1.00 | 13:15 | Πİ | Πİ | _ | | ZZZZZZ | 1.00 | 13:20 | T | | _ | | ZZZZZZ | 1.00 | 13:25 | | | | | | | | | | | | | | | | | | | Ì | | | | T | T | _ | | ZZZZZZ | 1.00 | 13:30 | | m | | | | | | П | | | | | | | | | | | | İ | | | T | T | | | ZZZZZZ | 1.00 | 13:35 | | | | | | | | | | | i | | j | | | | | | | | | | T | T | _ | | ZZZZZZ | 1.00 | 13:40 | | П | T | T | | | ZZZZZZ | 1.00 | 13:45 | | | | | | | | | | | | j | Ì | | | | | | | | | | T | T | | | ZZZZZZ | 1.00 | 13:50 | | | | | | | | | | | | j | i | | | | | | | | | | T | T | _ | | CCV4 | 1.00 | 13:55 | | х | | х | | | | х | | | | х | j | х | i | | | | | | | | T | T | | | CCB4 | 1.00 | 14:00 | | х | | х | | | | х | | | Π | х | T | x | İ | | | | | | | | T | T | _ | | ZZZZZZ | 1.00 | 14:06 | | П | | | | | | | | | | T | j | | | | | | | | | | | 一 | | | C007543-3 | 1.00 | 14:11 | | | | х | | | | | | | | | Ť | | | | | | | | | j | T | T | _ | | PBSPS145 | 1.00 | 14:16 | | | | х | | | | | | | | i | i | i | | | | | | | | | \Box | T | | | LCSSPS145 | 1.00 | 14:21 | | | | х | | | | | | | | Ì | T | | | | | | | | | | T | T | | | C007543-1 | 1.00 | 14:26 | | | | х | | | | | | | | T | T | T | i | | | | | | | İ | T | T | | | C007543-1L | 5.00 | 14:31 | | | | х | | | | | | | İ | Ť | Ť | j | j | | | | | | | T | T | T | _ | | C007543-1s | 1.00 | 14:36 | | | | х | | | | | | | | Ì | | | | | | | | | Ī | T | T | T | _ | | C007543-1SD | 1.00 | 14:41 | | | | х | | | | | | | | | | | Ì | | | | | | Ì | j | Ť | T | | | C007543-1A | 1.00 | 14:46 | | | | х | | | | | | | | Ì | | | | | | | | | Ī | | T | T | | | C007543-2 | 1.00 | 14:51 | | | | х | | | | | | | İ | j | Ť | T | T | | | | | | | j | T | T | | | CCV5 | 1.00 | 14:56 | | х | | х | | | | х | | | | х | | x | Ī | | | | | | | | T | T | | | CCB5 | 1.00 | 15:01 | | х | | х | | | | х | | | İ | х | T | х | j | | | | | | j | | Ť | T | | | CRDL2 | 1.00 | 15:06 | | х | | х | | | | x | | | | x | j | х | | | | | | | Ì | İ | T | T | _ | | ICS-A2 | 1.00 | 15:11 | | х | | х | | | | х | | | İ | х | T | x | | | | | | | | j | T | T | | | ICS-AB2 | 1.00 | 15:16 | | х | | x | | | | х | _ | | Ī | x | 寸 | x | ij | | | | | | | T | ヿ | T | _ | | CCV6 | 1.00 | 15:21 | | х | | х | | | | х | | | T | x | j | х | | | | | | | İ | T | 寸 | 寸 | _ | | ссв6 | 1.00 | 15:26 | | х | | х | | | | х | | | Πİ | x | İ | х | T | | | | | | i | | T | T | _ | $[\]star$ - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14 7.28.00 | A Company | #6010 200 7 | Standa | rd: CAL BL | u. | | | | |--|--------------------|---|------------|---------|---------|---------|--------| | | 07/27/00 | | | N | | | | | 1 | | • | | | | | | | | Ag3280 | A13082 | As1890 | 8_2496 | Ba4934 | Be3130 | Ca3179 | | * ** | .00005 | .04961 | 00739 | .00156 | .00035 | .02995 | .01071 | | THE N | .00064 | .00036 | .00279 | .00206 | .00021 | .00009 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1249.8 | .72236 | 37.792 | 132.26 | 60.848 | .29251 | .00024 | | | | . / 2200 | U1.172 | 102.20 | 00.040 | . 27251 | 2.2843 | | The state of s | . 00050 | .04986 | 00937 | .00010 | .00050 | .03002 | 01000 | | | 00040 | .04935 | 00542 | .00301 | .00020 | .02989 | .01088 | | | | | . 00042 | .00001 | .00020 | .02707 | .01053 | | Ma n | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Wee . | .00066 | 00120 | - 00075 | .02166 | 00317 | .00638 | 20447 | | Blev. | .00277 | . 00085 | .00106 | .00013 | .00008 | .00009 | .01240 | | TESO. | 421.94 | 70.491 | 141.42 | . 62063 | 2.5372 | 1.4060 | 6.0629 | | | | | | | 2.00,2 | 1.4000 | 0.0029 | | | .00262 | 00060 | ,00000 | .02176 | 00322 | .00645 | 21324 | | 252 | 00130 | 00181 | 00150 | .02157 | 00311 | .00632 | 19570 | | | | | | | 7.2 | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | N12316 | Sb2068 | Sn1899 | | M avoe | .00076 | .00045 | 00043 | .00207 | 00643 | .00734 | 00487 | | SDay | .00078 | .00007 | .00018 | .00477 | .00325 | .00130 | .00162 | | *RSD | 103.84 | 16.002 | 41.327 | 230.62 | 50.568 | 17.723 | 33.257 | | | | | | | | | 001201 | | #1 | .00131 | .00050 | 00030 | .00544 | 00413 | .00826 | 00373 | | #2 | .00020 | . 00040 | 00055 | 00130 | 00873 | .00642 | 00602 | | | | | | | | | | | Elem | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | 2203/1 | 2203/2 | | Avge | .00121 | 01226 | 01573 | .00020 | 00050 | .02383 | 00109 | | SDev | .00043 | .00046 | .00069 | .00014 | .00029 | .03099 | .00924 | | RASD . | 35.629 | 3.7699 | 4.3587 | 70.491 | 56.814 | 130.06 | 845.72 | | | | | | | | | | | 771 | .00151 | 01259 | 01622 | .00010 | .00071 | .00191 | .00544 | | #2 | .00090 | 01194 | 01525 | .00030 | . 00030 | .04574 | 00762 | | | | | | | | | | | Elem | 1960/1 | 1960/2 | Li6707 | | | | • | | Avge | 02668 | .02211 | . 00060 | | | | | | SDev | .00241 | .00249 | .00057 | | | | | | ≽ % RSD | 9.0303 | 11.280 | 94.443 | | | | | | | | | | | | | | | #1 | 02498 | .02035 | .00101 | | | | | | , #2 | 02839 | . 02387 | .00020 | * () * (
) * () | *
* | | | | | | | | | | | | | | | | | | C1203 | A) | | | | | | | |-------------|----------|-----------|-------------|----------|--------------|------------|----------| | Sto | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Υ | **** | WW 444- | wa- ww | *** | *** | | | Le n | 371.030 | 1000 0000 | 30041 MMV | | *** | 900° 1400° | wer take | | | 9949 | **** | 1000° 1100° | | - | Many lands | per ess. | | Y | 29.10048 | **** | **** | *** | ww ww | - | | | D . | .2925102 | *** | **** | **** | 54.00¢ 1000¢ | - | | | | | | | | | | | | | 9928 | *** | *** | una saur | **** | *** | ··· | | | 9969 | - | *** | **** | | | | | 2.8 | | | | | | | | |--------------|--------------|----------|------------------|------------------|------------------|------------------|----------------| | | 60102007 | | ird: STD 1 | | | | | | | per 07/27/00 | 10:03:40 | 1 | | | | | | * | Ag3280 | A13082 | As1890 | 8_2496 | Ba4934 | Be3130 | Ca3179 | | | 2.4691 | 5.1568 | 7.2815 | 4.4373 | 9.6253 | 11.178 | 6.2146 | | | .0031 | .0030 | .0067 | .0077 | .0090 | .009 | .0112 | | | . 12645 | .05759 | .09187 | .17297 | .09300 | .07715 | .18013 | | 4.5 | | | | | | | | | | 2.4713 | 5.1589 | 7.2862 | 4.4427 | 9.6316 | 11.184 | 6.2225 | | | 2.4669 | 5.1547 | 7.2767 | 4.4319 | 9.6190 | 11.172 | 6.2067 | | | | | | | | | | | | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | - 4 | 11.372 | 5.1602 | 5.5016 | 8.8033 | 2.6770 | 48.123 | 40.436 | | | .018 | .0101 | .0110 | .0043 | .0003 | .057 | .021 | | | . 16034 | .19559 | . 19906 | . 04939 | .01086 | .11764 | .05225 | | | | | | | | | | | | 11.385 | 5.1673 | 5.5094 | 8.8064 | 2.6768 | 48.163 | 40.421 | | | 11.360 | 5.1531 | 5.4939 | 8.8002 | 2.6772 | 48.083 | 40.451 | | | <u></u> | | | | | | | | | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Sb2068 | Sn1899 | | B yge | 5.4719 | 6.4015 | 3.4330 | .64700 | 5.1173 | 3.3107 | 3.5222 | | Dev | .0038 | .0063 | .0161 | .00036 | .0059 | .0012 | .0041 | | RSD | .07030 | .09793 | .47028 | . 05572 | .11539 | .03715 | . 11537 | | | | | | | | | | | #1 | 5.4746 | 6.4059 | 3.4216 | .64725 | 5.1215 | 3.3099 | 3.5193 | | #2 | 5.4692 | 6.3971 | 3.4444 | .64674 | 5.1132 | 3.3116 | 3.5251 | | Elem | Sr4215 | Ti3349 | T11000 | V 0004 | 7 | 000711 | 000710 | | Avge | 48.127 | 36.264 | T11908
5.3015 | V_2924
2.2703 | Zn2062
3.1491 | 2203/1
25.005 | 2203/2 | | SDev | .010 | .035 | .0091 | .0019 | .0057 | .095 | 14.747
.008 | | %RSD | .01988 | .09611 | .17210 | .08263 | .18146 | .37842 | .05733 | | 30,100 | .01700 | .07011 | . 1/210 | . 00200 | .10140 | .0/042 | .00/00 | | #1 | 48.133 | 36.288 | 5.3079 | 2.2717 | 3.1531 | 25.072 | 14.753 | | #2 | 48.120 | 36.239 | 5.2950 | 2.2690 | 3.1450 | 24.939 | 14.741 | | | | | W 11 24 7 W 15 | A. II W / 1/ | W 1 1 1 1 0 0 | A. 4 . 2 . 2 . 2 | **** | | Elem | 1960/1 | 1960/2 | L16707 | | | | | | Avge | 4.7626 | 5.2163 | 23.271 | | | | | | SDev | .0049 | .0089 | .080 | | | | | | ARSD | .10309 | .17103 | . 34545 | | | | | | | | | - | | | | | | #1 | 4.7660 | 5.2100 | 23.328 | | | | | | #2 | 4.7591 | 5.2226 | 23.214 | | | | | | EStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------------|------------|-------------|------------|-----------------|--------------|--------------|--| | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | o n | : Y | *** | **** | **** | West tour | spine spine | took and the second of the | | Wien | 371.030 | **** | 400 ton | was vita | 15°04' 10004 | *** | - | | | 9726 | apply ables | **** | NAME AND PARTY. | 1000 1000 | Artic person | 5000 5064* | | | 6.602886 | their teatr | 5000 5000° | | 1000 0000 | **** | New York | | D . | .0678914 | *** | **** **** | **** | **** | **** | ************************************** | | 7 | | | | | | | | | | 9730 | www. | **** | *** | 1860 VALUE | **** | | | | 9721 | *** | *** | | | | | **Nysis Report** QC Standard 07/27/00 10:13:40 AM Operator: GSP page 1 60102007 Sample Name: STD 1 ine: 07/27/00 10:08:45 | الله الله | NC Corr. | ractor: 1 | | | | | | |---------------------------------------|---|--|--|--|--|--|---| | | Ag3280
ppm
.99930
.00049
.04907 | A13082
ppm
19.965
.017
.08356 | As1890
ppm
2.0145
.0000 | B_2496
ppm
2.0002
.0001
.00350 | Ba4934
ppm
1.9920
.0013
.06444 | Be3130
ppm
1.0085
.0008
.08409 | Ca3179
ppm
20.166
.020
.09728 | | | .99965
.99896 | 19.976
19.953 | 2.0145
2.0145 | 2.0002 | 1.9929
1.9911 | 1.0091 | 20.180 | | ribors | QC Pass | Silve | 1.0000 | 20.000 | 2.0000 | 2.0000 | 2.0000 | 1.0000 | 20.000 | | Jänge | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Ingits | ppm | Avge | 1.0107 | 2.0125 | 2.0103 | 1.9939 | 20.137 | 20.096 | 19.917 | | SDev | .0008 | .0013 | .0018 | .0012 | .003 | .010 | .037 | | ERSD | .07757 | .06276 | .08703 | .06097 | .01446 | .04806 | .18350 | | #1 | 1.0112 | 2.0134 | 2.0115 | 1.9947 | 20.139 | 20.103 | 19.943 | | #2 | | 2.0116 | 2.0090 | 1.9930 | 20.135 | 20.090 | 19.891 | | Errors | QC Pass | Walus | 1.0000 | 2.0000 | 2.0000 | 2.0000 | 20.000 | 20.000 | 20.000 | | Range | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
20.117
.021
.10275 | Mn2576
ppm
2.0087
.0012
.05838 | Mo2020
ppm
2.0129
.0058
.28842 | Na3302
ppm
19.872
.100
.50224 | Ni2316
ppm
2.0139
.0009
.04332 | Pb2203
2.0159
.0047
.23554 | Se1960
2.0113
.0035
.17339 | | #1 | 20.132 | 2.0096 | 2.0088 | 19.943 | 2.0145 | 2.0192 | 2.01 3 7 | | #2 | 20.102 | 2.0079 | 2.0170 | 19.802 | 2.0133 | 2.0125 | 2.00 8 8 | | Errors | QC Pass | Value | 20.000 | 2.0000 | 2.0000 | 20.000 | 2.0000 | 2.0000 | 2.0000 | | Range | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 1.9975 | 2.0184 | 1.9995 | 2.0016 | 2.0022 | 2.0058 | 2.0310 | | SDev | .0037 | .0016 | .0034 | .0022 | .0059 | .0001 | .0034 | | %RSD | .18407 | .07894 | .16865 | .10979 | .29464 | .00270 | .16499 | | #1 | 1.9949 | 2.0172 | 2.0019 | 2.0031 | 2.0063 | 2.0059 | 2.0333 | | #2 | 2.0001 | 2.0195 | 1.9971 | 2.0000 | 1.9980 | 2.0058 | 2.0286 | | Errors | QC Pass | Value | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | | Range | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | ייבעונים | Report | QC Sta | ndard | 07/27 | /00 10:13: | 40 AM | page 2 | |----------|------------|---------|-----------|---------------|-----------------------------|----------|---------| | lini;ts | ppm | ppm | ppm | mqq | ppm | | | | TY 36 | 2.0087 | 2.0194 | 2.0200 | 2.0069 | 2.0007 | | | | 1500 | .0048 | .0047 | .0072 | .0016 | .0014 | | | | | .24091 | .23288 | . 35844 | . 08042 | .06998 | | | | | 2.0121 | 2.0227 | 2.0251 | 2.0081 | 1.9997 | | | | | 12.0053 | 2.0161 | 2.0148 | 2.0058 | 2.0017 | | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
2.0000
5.0000 | | | | Total | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Y | | | *** | ww usr | Mar trav | | | | 371.030 | | **** | | **** | | ··· | | | 9835 | **** | wive with | Sector Strips | ww w. | - | we we | | | * 11.13072 | **** | otor book | **** | **** | w | *** | | | .1131794 | | www www | **** | War tour | WW 1000 | ••• | | | 9827 | *** | **** | ww ww | **** | www 1944 | ··· | | | 0040 | | | | | | | nalysis Report QC
Standard 07/27/00 10:18:43 AM page 1 Operator: GSP thod: 60102007 Sample Name: ICV/CCV 7 Time: 07/27/00 10:13:48 | | : 07/27/00 | 10:13:48 | • | | (| | | |--|---------------|---------------|---------------|------------------|-----------------|--------------|-------------------| | ment:
35:30 | NC Corr. | Factor: 1 | | | | | | | | Ag3280 | A13082 | As1890 | D 0404 | D=4074 | | | | | ppm | | | B_2496 | Ba4934 | Be3130 | Ca3179 | | NGE . | .49234 | ppm
9.9326 | ppm
.99743 | ppm
1.0019 | ppm
comz4 | ppm
50010 | ppm | | | .00119 | .0040 | .00974 | .0041 | . 99834 | .50812 | 10.151 | | ප්රිත | .24189 | .04009 | .97649 | .40821 | .00106 | .00061 | .014 | | | | .04007 | . 27043 | .40021 | .10588 | .11923 | .14039 | | | .49150 | 9.9354 | . 99054 | .99899 | .99759 | .50769 | 10.141 | | 2 | .49319 | 9.9298 | 1.0043 | 1.0048 | .99909 | .50854 | 10.161 | | | | | | | | | | | Freers | QC Pass | Yayue, | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Targe . | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | inits | ppm | mag | ppm | ppm | ppm | ppm | ppm | | a vige | .51039 | 1.0092 | 1.0072 | . 99364 | 10.117 | 10.167 | 9.6781 | | SURV | .00039 | . 0009 | .0024 | .00070 | .021 | .015 | .0095 | | 230 | .07575 | .09111 | .23465 | .07067 | .20876 | .14460 | .09859 | | | .51011 | 1.0098 | 1.0055 | . 99314 | 10.102 | 10.157 | 9.6713 | | 12 | .51066 | 1.0085 | 1.0089 | .99413 | 10.132 | 10.137 | 9.6848 | | | | | | | | 10.17, | 7.0040 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | W altue | .50000 | 1.0000 | 1.0000 | 1.0000 | | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | L ELem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni2316 | Pb2203 | Se1960 | | inits | ppm | ppm | ppm | ppm | mad | FD2203 | 201300 | | Avge | 10.032 | 1.0090 | 1.0023 | 9.5805 | 1.0144 | 1.0111 | 1.0010 | | SDev | .011 | .0014 | .0049 | .0213 | .0000 | .0023 | .0044 | | RŞD | .10595 | .13402 | . 48731 | .22217 | .00191 | .22556 | . 44075 | | | | | | | | | | | | 10.024 | 1.0080 | .99887 | 9.5955 | 1.0144 | 1.0095 | . 99788 | | 2 | 10.039 | 1.0099 | 1.0058 | 9.5654 | 1.0144 | 1.0128 | 1.0041 | | Errors | QC Pass | Value | 10.000 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | 652049 | 6×1000 | 0-4015 | T - T T 4 C | T11000 | | 7 00 (0 | | Units | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Avge | ppm
.97061 | ppm
1.0092 | ppm | ppm | ppm
1 0017 | ppm | ppm
1 0075 | | *SDev | .00904 | .0020 | 1.0088 | .99178 | 1.0013 | 1.0043 | 1.0275 | | ************************************** | .93174 | .19956 | .16638 | .00153
.15424 | .0014
.13822 | .0011 | .0028
.27189 | | | .,01,4 | / / 00 | . 10000 | . 10424 | LUULL | | . 2/109 | | #1 | . 96422 | 1.0078 | 1.0076 | . 99069 | 1.0004 | 1.0035 | 1.0255 | | #2 | .97701 | 1.0107 | 1.0100 | . 99286 | 1.0023 | 1.0050 | 1.0295 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | QC Pass | QC Pass | 00 0000 | | Value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | QC Pass
1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | | | - | | | | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | | | | | | | | | Analysis | Report | QC Sta | ndard | 07/27 | /00 10:18: | 43 AM | page 2 | |--------------------------|------------------------|------------------------|-------------------------|---------------------|-----------------------------|--------------|--------------| | Units
Sive | ppm
1.0064
.0030 | ppm
1.0135
.0019 | ppm
.99953
.00267 | ppm
1.0017 | ppm
.98157 | | | | ARSD | .29814 | .18958 | . 26725 | .0053
.52718 | .00202
.20631 | | | | #1
#2 | 1.0043
1.0085 | 1.0121 | .99764
1.0014 | . 99799
1 . 0055 | .98300
.98014 | | | | Errors
Value
Range | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | intStd
Ode
lam | 1
Counts
Y | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | avlen | 371.030 | 3000 PART | **** | **** | me up | | ww **** | | Silvice | 9950 | **** | 6000° 1600° | ween seek- | van var | 800A- 830A- | way was | | | 13.15882 | ***** | **** | **** | 1998' 3003' | pggto talen | 3000° 3000° | | 13D. | .1322511 | time time | 1994: Madi | | seer wa. | | ander also | | | 9941 | *** | ***** | ***** | **** | **** | *** | Renort Rlank Sample 07/27/00 10:23:46 AM page ysis Report Blank Sample 07/27/00 10:23:46 AM Operator: GSP page 1 thod: 60102007 Sample Name: ICB/CCB n Time: 07/27/00 10:18:51 menent: Corr. Factor: 1 | ande: Co | onc corr. | Factor: 1 | | | | | | |--|--|--|--|---|---|---|--| | Elem
*Units
Avge | Ag3280
ppm
.00018 | A13082
ppm
.01121 | As1890
ppm
.00090 | B_2496
ppm
.00301 | Ba4934
ppm
.00077 | Be3130
ppm
.00038 | Ca3179
ppm
.00983 | | SDev
%RSD | .00006
31.060 | .00055
4.9144 | .00041
45.558 | .00075
25.021 | .00010
12.936 | .00005 | .00211 | | #1
#2 | .00014 | .01082
.01160 | .00120
.00061 | .00248
.00354 | .00070 | .00034 | .00834
.01132 | | Errors
High
Low | LC Pass
.00500
00500 | LC Pass
.10000
10000 | LC Pass
.00500
00500 | LC Pass
.10000
10000 | LC Pass
.01000
01000 | LC Pass
.00300
00300 | LC Pass
.50000
50000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.00053
.00010
18.276 | Co2286
ppm
.00121
.00033
27.177 | Cr2677
ppm
.00126
.00067
53.026 | Cu3247
ppm
.00075
.00035
46.550 | Fe2714
ppm
.01725
.00267
15.506 | Fe2599
ppm
.00807
.00131
16.278 | K_7664
ppm
.00694
.00713 | | #1
#2 | .00046
.00060 | .00097
.00144 | .00079
.00173 | .00050
.00100 | .01536
.01915 | .00714
.00900 | .00190
.01198 | | Errors
High
Low | LC Pass
.00500
00500 | LC Pass
.01000
01000 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | NOCHECK | LC Pass
.10000
10000 | LC Pass
1.0000
-1.0000 | | | | | | | | | | | Flam
NUTS
Ce | Mg2790
ppm
.01339
.00201
15.018 | Mn2576
ppm
.00077
.00022
28.406 | Mo2020
ppm
.00164
.00039
23.654 | Na3302
ppm
.02290
.03456
150.88 | Ní2316
ppm
.00153
.00012
7.5310 | Pb2203
.00180
.00007
4.0057 | Se1960
00113
.00103
90.718 | | ilem
In ts | ppm
.01339
.00201 | ppm
.00077
.00022 | ppm
.00164
.00039 | ppm
.02290
.03456 | ppm
.00153
.00012 | .00180 | 00113
.00103 | | Elem
frits
Ce
ev
esb | ppm
.01339
.00201
15.018 | ppm
.00077
.00022
28.406 | ppm
.00164
.00039
23.654 | ppm
.02290
.03456
150.88 | ppm
.00153
.00012
7.5310 | .00180
.00007
4.0057 | 00113
.00103
90.718 | | elem
nits
voe
ev
esb
11
22
Errors
High | ppm
.01339
.00201
15.018
.01197
.01481
LC Pass
.50000 | ppm
.00077
.00022
28.406
.00061
.00092
LC Pass
.01000 | ppm
.00164
.00039
23.654
.00136
.00191
LC Pass | ppm
.02290
.03456
150.88
00153
.04734
LC Pass
1.0000 | ppm
.00153
.00012
7.5310
.00145
.00161
LC Pass
.00500 | .00180
.00007
4.0057
.00175
.00185
LC Pass | 00113
.00103
90.718
00186
00041
LC Pass | | Elem
Snits
Voe
V
SD
F1
2
Errors
Wigh
Low
Elem
Units
Avge
SDay | ppm
.01339
.00201
15.018
.01197
.01481
LC Pass
.50000
50000
Sb2068
ppm
.00545
.00152 | ppm
.00077
.00022
28.406
.00061
.00092
LC Pass
.01000
01000
Sn1899
ppm
.00131
.00036 | ppm
.00164
.00039
23.654
.00136
.00191
LC Pass
.01000
01000
Sr4215
ppm
.00079
.00013 | ppm
.02290
.03456
150.88
00153
.04734
LC Pass
1.0000
-1.0000
Ti3349
ppm
.00101
.00006 | ppm
.00153
.00012
7.5310
.00145
.00161
LC Pass
.00500
00500
T11908
ppm
00049
.00054 | .00180
.00007
4.0057
.00175
.00185
LC Pass
.00500
00500
V_2924
ppm
.00115
.00000 | 00113
.00103
90.718
00186
00041
LC Pass
.01000
01000
Zn2062
ppm
.00070
.00018 | | Elem
Snits
Voe
V
SD
F1
2
Errors
Wigh
Low
Elem
Units
Avge
SDay | ppm
.01339
.00201
15.018
.01197
.01481
LC Pass
.50000
50000
Sb2068
ppm
.00545
.00152
27.912 | ppm
.00077
.00022
28.406
.00061
.00092
LC Pass
.01000
01000
Sn1899
ppm
.00131
.00036
27.177 |
ppm
.00164
.00039
23.654
.00136
.00191
LC Pass
.01000
01000
Sr4215
ppm
.00079
.00013
16.274 | ppm
.02290
.03456
150.88
00153
.04734
LC Pass
1.0000
-1.0000
Ti3349
ppm
.00101
.00006
5.6605 | ppm
.00153
.00012
7.5310
.00145
.00161
LC Pass
.00500
00500
T11908
ppm
00049
.00054
109.63 | .00180
.00007
4.0057
.00175
.00185
LC Pass
.00500
00500
V_2924
ppm
.00115
.00000
.32864 | 00113
.00103
90.718
00186
00041
LC Pass
.01000
01000
Zn2062
ppm
.00070
.00018
25.201 | | | Report | Blank 9 | Sample | 07/27, | /00 10:23: | 46 AM | pa ge | |----------------------|------------------------|---|-------------------------|------------------------|---|-------------|--------------| | Annts
Noge
Pev | ppm
00009
.00120 | ppm
.00274
.00049 | ppm
.00183
.00111 | ppm
00261
.00099 | ppm
.0009
.0000 | | | | RASD | 1364.4 | 17.856 | 60.438 | 37.773 | . 43259 | | | | | 00094
.00076 | .00309
.00240 | .00105
.00261 | 00331
00191 | .00089
.00089 | | | | Erpors
Migh
DW | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | IntStd | 1 | 2 | 3 [.] | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | ··· | | **** | NAV MAY | war voor | | | Wavlen | 371.030 | *** | *** | *** | Shar segar | - | 2000 MM. | | Avge | 9958 | | ···· ··· | - | war and | Mayor today | 3050- 6660- | | SDev | 40.70215 | ···· | *** | *** | *1887 3000* | MARY MANY | Ann arm | | %RSD | .4087213 | 10 to | ***** | word vider | *************************************** | **** | www. 1644- | | #1 | 9930 | 176F 1000° | 1140 MM | me me | | ABBOT BASTI | visor take | | #2 | 9987 | | | | | | | Machaete 00. 07/27/00 10-20-50 AM Report QC Standard 07/27/00 10:28:50 AM page 1 Operator: GSP 60102007 Sample Name: CRI **67/27/00** 10:23:55 ONC Corr. Factor: 1 | 1.0 | | 1 40 001 | • | | | | | |---------------------------------------|---|---|---|--|---|--------------------------------------|--------------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .00582 | .11178 | .00650 | .10048 | .01069 | .00533 | 1.0570 | | | .00012 | .00118 | .00097 | .00042 | .00011 | .00007 | .0127 | | | 2.0164 | 1.0522 | 14.988 | .41994 | 1.0273 | 1.2963 | 1.2059 | | 2, | .00590 | .11262
.11095 | .00719
.00581 | .10078
.10019 | .01077
.01061 | .00538 | 1.0660
1.0479 | | Errors | QC Pass | OC Pass | QC Pass | QC Pass | QC Pass | QC Pass | QC Pass | | Value | .00500 | .10000 | .00500 | .10000 | .01000 | .00500 | 1.0000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00545 | .01132 | .00670 | .01075 | .11276 | .11187 | .95694 | | SDev | .00016 | .00053 | .00001 | .00025 | .00463 | .00141 | .00182 | | %RSD | 3.0034 | 4.6477 | .17820 | 2.2847 | 4.1075 | 1.2564 | .18988 | | #1 | .00533 | .01169 | .00669 | .01058 | .11604 | .11286 | . 95565 | | #2 | .00556 | .01095 | .00671 | .01093 | .10949 | .11088 | . 95822 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | | 50.000 | 50.000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.51557
.00685
1.3290 | Mn2576
ppm
.01075
.00011
1.0334 | Mo2020
ppm
.01060
.00058
5.5008 | Na3302
ppm
1.0301
.0961
9.3325 | N12316
ppm
.00636
.00024
3.7534 | Pb2203
.00397
.00111
28.015 | Se1960
.00873
.00058
6.6394 | | #1
#2 | .52042
.51073 | .01083
.01067 | .01101 | .96210
1.0981 | .00620
.00653 | .00476 | .00914
.00832 | | Errors | QC Pass | Value | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .05428 | .00597 | .00552 | .00559 | .01077 | .01092 | .02184 | | SDev | .00141 | .00108 | .00002 | .00012 | .00257 | .00026 | .00072 | | %RSD | 2.5944 | 18.154 | .27764 | 2.0921 | 23.890 | 2.3920 | 3.3135 | | #1 | .05527 | .00673 | .00553 | . 00567 | .01259 | .01073 | .02235 | | #2 | .05328 | .00520 | .00551 | . 00551 | .00895 | | .02133 | | Errors | QC Pass | Value | .05000 | .00500 | .00500 | .00500 | .01000 | .01000 | .02000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | Elem. | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | yels | Report | QC Stai | ndard | 07/27, | /00 10:28:5 | 50 AM | page 2 | |-------|----------|-------------|-----------|----------------|-----------------------------|---------|-------------| | ets. | ppm | ppm | mag | ppm | maq | | | | | .00482 | .00355 | .00984 | .00817 | .04902 | | | | | .00515 | .00424 | .00261 | .00217 | .00035 | | | | P | 106.84 | 119.22 | -26.485 | 26.570 | .72167 | | | | | .00118 | .00655 | .00800 | .00970 | .04927 | | | | | .00845 | .00056 | .01169 | .00663 | .04877 | | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
.05000
50.000 | | | | Sta . | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | 4.0 | Υ | | | | | • | | | 4 | 371.030 | ··· | *** | 1407 3200 | *** | | | | | 9924 | ··· | *** | - | **** | - | trade total | | | 101,2613 | **** | **** | unique aggrafa | approximately | we we | nor star | | | 1.020416 | salah salah | *** | was see | | **** | *** | | | 9852 | | 5000 5000 | | | | ···· | | | 9005 | | *** | *** | | *** | **** | nalysis Report QC Standard 07/27/00 10:34:03 AM Operator: GSP page 1 thod: 60102007 Sample Name: AL500 In Time: 07/27/00 10:28:59 | cae: co | NC Corr. | Factor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|---|---| | lėm
Units
Avge
SDev
ERSD | Ag3280
ppm
.00000
.00009
15573. | A13082
ppm
491.07
.47 | As1890
ppm
.00044
.00113
256.00 | B_2496
ppm
.00465
.00128
27.495 | Ba4934
ppm
.00069
.00003
4.5924 | Be3130
ppm
.00057
.00000
.65165 | Ca3179
ppm
.01490
.00006
.38536 | | #1
#2 | 00006
.00006 | 490.74
491.41 | .00124
00036 | .00375
.00555 | .00067 | .00057
.00057 | .01486 | | Errors
Lallue
Lange | NOCHECK | QC Pass
500.00
250.00 | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | Con
Consts
Tyge
SDev
SRSD | Cd2265
ppm
00029
.00006
21.090 | Co2286
ppm
00017
.00014
85.706 | Cr2677
ppm
.00056
.00035
62.708 | Cu3247
ppm
.00091
.00030
32:273 | Fe2714
ppm
.00797
.01328
166.65 | Fe2599
ppm
.00359
.00001
.20329 | K_7664
ppm
.01556
.00637
40.928 | | #1
#2 | 00024
00033 | 00027
00007 | .00031 | .00070 | 00142
.01736 | .00358
.00359 | .01105 | | ors
Vale | NOCHECK | NOCHECK . | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | Mg2790
ppm
.00319
.00136
42.760 | Mn2576
ppm
.00097
.00005
4.8845 | Mo2020
ppm
00049
.00087
178.24 |
Na3302
ppm
01993
.08446
423.87 | N12316
ppm
.00095
.00029
30.267 | Pb2203
00154
.00077
50.212 | Se1960
00383
.00197
51.494 | | 12 | .00223 | .00094 | .00013
00110 | 07965
.03980 | .00075 | 00099
00209 | 00522
00243 | | Editors
Kaliue
Range | NOCHECK | Elem
Units
Avge
SDev
&RSD | Sb2068
ppm
.00237
.00405
171.00 | Sn1899
ppm
.00190
.00139
73.213 | Sr4215
ppm
.00018
.00002
12.253 | Tí3349
ppm
.00052
.00000
.84246 | T11908
ppm
.00418
.00044
10.527 | V_2924
ppm
.00079
.00046
58.097 | Zn2062
ppm
.00138
.00023
16.900 | | #1
#2 | 00050
.00524 | .00288
.00092 | .00016 | .000 5 2
.00051 | .00387
.00449 | .00047 | .00155
.00122 | | Errors
Value
Range | NOCHECK | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | nalysi: | s Report | QC Sta | ındard | 07/27 | /00 10:34:0 | 03 AM | page 2 | |--------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------|-----------|-----------| | Units | ppm | ppm | ppm | ppm | ppm | | | | Avge
SDev | .00105 | Q00401 | Q00910 | 00120 | .00023 | | | | *RSD | 30.845 | .00064
15.836 | .00136
14.960 | .00363
303.49 | .00005
19.365 | | | | #1 | Q.00415 | Q00356 | Q00813 | 00377 | .00020 | | | | #2 | .00267 | Q00446 | Q01006 | .00137 | .00026 | | | | Errors
Value
Bange | QC Fail
.00000
.00300 | QC Fail
.00000
.00300 | QC Fail
.00000
.00500 | QC Pass
.00000
.00500 | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | *** | *** | - | teller \$4.44* | ···· | | | Wavlen | 371.030 | * **** | *** | active section | **** | | w | | Avge | 9525 | *** | www. | **** | var var | | *** | | SDev | 11.13072 | mar san- | **** | HW WAT | | 1000-1000 | | | RSD | .1168609 | *** | man was | Mar sale- | 1000 V900 | **** | year Mar. | yeis Report QC Standard 07/27/00 10:39:08 AM page 1 thod: 60102007 Sample Name: FE500 in Time: 07/27/00 10:34:12 sament: ade: CONC Corr. Factor: 1 Operator: GSP | Code: C | DNC Corr. | Factor: | 1 | | | | | |--|--|---|--|---|---|---|---| | Elem
Units
Avge
SDev
%RSD | Ag3280
ppm
.00072
.00080
111.39 | A13082
ppm
.22204
.02538
11.428 | As1890
ppm
Q.00309
.00165
53.544 | B_2496
ppm
.00380
.00067
17.668 | Ba4934
ppm
00005
.00003
50.738 | Be3130
ppm
.00043
.00002
3.7928 | Ca3179
ppm
.00467
.00068
14.676 | | #1
#2 | .00129
.00015 | . 23999
. 20410 | 0.00425
.00192 | .00332
.00427 | 00003
00007 | .00044 | .00515
.00419 | | Errors
Value
Range | NOCHECK | NOCHECK | QC Fail
.00000
.00300 | NOCHECK | NOCHECK | NOCHECK | QC Pass
.00000
.10000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
Q.00241
.00022
9.1819 | Co2286
ppm
00029
.00016
55.216 | Cr2677
ppm
.00135
.00036
26.875 | Cu3247
ppm
.00004
.00027
660.30 | Fe2714
ppm
531.33
1.73
.32540 | Fe2599
ppm
379.45
.35 | K_7664
ppm
.02148
.00121
5.6196 | | #1
#2 | Q.00257
Q.00225 | 00041
00018 | .00160
.00109 | .00023
00015 | 530.11
532.55 | 379.20
379.70 | . 02062
. 02233 | | Errors
Value
Range | QC Fail
.00000
.00050 | QC Pass
.00000
.00500 | NOCHECK | QC Pass
.00000
.00500 | QC Pass
500.00
250.00 | NOCHECK | NOCHECK | | Elem
Dunits
Avge
SDev
&RSD | Mg2790
ppm
12611
.00286
2.2712 | Mn2576
ppm
00008
.00000
3.6983 | Mo2020
ppm
00111
.00033
29.488 | Na3302
ppm
.15083
.06591
43.698 | Ní2316
ppm
.00106
.00055
52.048 | Pb2203
.00280
.00114
40.541 | Se1960
00082
.00294
360.10 | | #1
#2 | 12813
12408 | 00008
00008 | 00088
00134 | .19744
.10423 | .00145
.00067 | .00200
.00361 | 00290
.00126 | | Errors
(a) ue
(a)ge | NOCHECK | 21em
Units
14de
Soev
Soev | Sb2068
ppm
.00021
.00429
2017.8 | Sn1899
ppm
.00584
.00003
.57992 | Sr4215
ppm
.00008
.00001
16.421 | Ti3349
ppm
.00008
.00006
67.169 | T11908
ppm
.00258
.00095
36.862 | V_2924
ppm
.00122
.00035
28.564 | Zn2062
ppm
.00047
.00006
12.174 | | 71
2 | .00325
00282 | .00581 | .00009
.00007 | .00012
.00004 | .00191
Q.00325 | .00097
.00146 | .00051
.00043 | | Errors
Value
Vange | QC Pass
.00000
.00500 | NOCHECK | NOCHECK | NOCHECK | QC Pass
.00000
.00300 | QC Pass
.00000
.00300 | QC Pass
.00000
.01000 | | Elam | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | Report | QC Standard | | 07/27 | 07/27/00 10:39:08 AM | | | | |------------------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------|--------------|--------------|--| | | ppm
Q.00256
.00050
19.395 | ppm
Q.00293
.00146
49.787 | ppm
00159
.00201
126.88 | ppm
00043
.00340
786.80 | ppm
.00005
.00006
108.81 | | | | | 2 | Q.00221
Q.00291 | .00190
Q.00395 | Q00301
00016 | 00284
.00197 | .00010 | | | | | rcors
edua
Renge | QC Fail
.00000
.00200 | QC Fail
.00000
.00200 | QC Pass
.00000
.00300 | QC Pass
.00000
.00300 | NOCHECK | | | | | IntStd
Mode
Elem | 1
Counts
Y | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | Wavlen | 371.030 | 900F 1990- | and make | seed Stew | HAL MILE | 1000 1100 | **** | | | Avge | 9321 | | Men acco. | 360° | **** | **** | Spend Milet | | | SDev | 27.82714 | | biographic | 1137- 1134- | 1999 9994 | sales sour- | | | | %RSD | .2985491 | **** | we we | ***** ***** | we we | | ***** | | | #1 | 9301 | and and | rede, rese. | **** **** | name stage | and spec | **** | | | #2 | 9340 | wr ww | VII.V 1880 | *** | **** | *** **** | 688A* 5550* | On Standard 07/07/00 10 44-10 AM ____ lysis Report QC Standard 07/27/00 10:44:12 AM Operator: GSP page 1 ods 60102007 Sample Name: ICSA 07/27/00 10:39:16 Corr. Factor: 1 | | | . , | • | | | | | |---------------------------------------|---|---|--|---|---|----------------------------|-------------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .00027 | 519.82 | .00425 | .00570 | .00117 | .00111 | 446.72 | | | .0009 | 1.82 | .00198 | .00016 | .00007 | .00003 | 1.35 | | | 34.832 | .34935 | 46.455 | 2.8129 | 5.8882 | 2.2665 | .30188 | | 1 2 | .00034
.00020 | 518.54
521.10 | .00565
.00286 | .00559
.00581 | .00113
.00122 | .00110 | 445.77
447.67 | | Enrors | QC Pass | Value | .00000 | 500.00 | .00000 | .00000 | .00000 | .00000 | 500.00 | | Range | .01000 | 100.00 | .01000 | .20000 | .02000 | .00600 | 100.00 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00084 | .00092 | .00023 | .00004 | 198.55 | 177.80 | 02475 | | SDev | .00025 | .00030 | .00034 | .00006 | 47 | .48 | .00260 | | ARSD | 29.217 | 33.099 | 149.27 | 156.01 | 23909 | .27242 | 10.516 | | #1 | .00067 | .00113 | .00047 | .00008 | 198.21 | 177.45 | 02659 | | #2 | .00101 | | 00001 | 00000 | 198.89 | 178.14 | 02291 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | | Value | .00000 | .00000 | .00000 | .00000 | 200.00 | | .00000 | | Range | .01000 | .02000 | .01000 | .02000 | 40.000 | | 2.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
548.51
2.08
.37870 | Mn2576
ppm
.00922
.00005
.50312 | Mo2020
ppm
00145
.00090
61.844 | Na3302
ppm
.00258
.02669
1035.4 | Ní2316
ppm
.00011
.00146
1335.9 | .00645
.00212
32.878 | Se1960
00039
.00075
190.29 | | #1 | 547.04 | .00919 | 00081 | 01629 | 00092 | .00 4 95 | 00093 | | . #2 | 549.98 | .00925 | 00208 | .02145 | .00114 | .00794 | .00014 | | Errors | QC Pass | Value | 500.00 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | | Range | 100.00 | .02000 | .02000 | 2.0000 | .01000 | .01000 | .02000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00397 | .00411 | 00509 | 00156 | .01212 | 00170 | .00310 | | SDev | .00462 | .00173 | .00001 | .00007 | .00325 | .00003 | .00019 | | %RSD | 116.22 | 42.064 | .18671 | 4.2992 | 26.831 | 1.9076 | 6.0923 | | #1 | .00724 | .00534 | 00509 | 00161 | .00982 | 00173 | .00297 | | #2 | .00071 | .00289 | 00510 | 00151 | .01441 | 00168 | .00323 | | Errors | QC Pass | Value | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | | Range | .10000 | .02000 | .01000 | .01000 | .02000 | .02000 | .04000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | 07/97/00 10-44-19 0M Analueie Denort | malysis | Report | QC Star | ndard | 07/27 | /00 10:44:3 | L2 AM | page 2 | |---------|-----------|-----------------|-----------|------------|-------------|---------------------------------------|------------| | | | | | | | | | | Maits | ppm | ppm |
mag | ppm | ppm | | | | | .00717 | .00608 | .00008 | 00063 | .00015 | | | | | .00122 | .00257 | .00340 | .00057 | .00003 | | | | #Sp' | 16.991 | 42.221 | 4134.8 | 90.327 | 21.636 | | • | | | | | | | | | | | | .00631 | .00427 | 00232 | 00023 | .00018 | | | | | .00803 | .00790 | .00248 | 00104 | .00013 | | | | rrors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass | | | | alue. | | | | | .00000 | | | | | | | | | .10000 | | • • | | | | _ | _ | | _ | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | .Y | | and war | **** | Mir vite | | | | | 371,030 | tope and | | **** | an an | | | | | 9018 | , | war ver | mar mar | Mar war | · · · · · · · · · · · · · · · · · · · | *** | | 38.3 | 26.50684 | · | 1000 1000 | **** | 1000 4004 | war unr | ener more | | | . 2939356 | A Committee was | was were | 0000 0000· | 1000 | | | | | 9037 | | we we | w w | | **** | open sager | | | -9000 | | | **** | was sup | WW- 1484 | | Analysis Report QC Standard 07/27/00 10:49:16 AM page 1 Operator: GSP rethod: 60102007 Sample Name: ICSAB Fun Time: 07/27/00 10:44:21 pmment: Yode: CONC Corr. Factor: 1 | rode: CU | NC Corr. | Factor: 1 | | | | | | |-----------------|-------------------|---|-----------------|-----------------|---------------|---------------------|---------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | ppm | maga | 0_2470
mag | ppm | | | | evge | .54673 | 532.33 | 1.0537 | 1.0693 | 1.0374 | ppm
.50755 | ppm
453.60 | | SDev | .00125 | .49 | .0027 | .0031 | .0006 | .00015 | .52 | | RSD | .22771 | .09118 | 25519 | . 29326 | .05751 | .02940 | .11520 | | | | · · · · · · · · · · · · · · · · · · | , | | .00101 | .02.740 | .11320 | | #1 | .54761 | 532.67 | 1.0518 | 1.0715 | 1.0378 | .50765 | 453.97 | | #2 | .54585 | 531.98 | 1.0556 | 1.0671 | 1.0370 | .50744 | 453.24 | | | | | | | 1100/0 | | | | Errors | QC Pass | alue | .50000 | 510.00 | 1.0000 | 1.0000 | 1.0000 | .50000 | 510.00 | | Range | .10000 | 102.00 | . 20000 | . 20000 | .20000 | .10000 | 102.00 | | | | | | • | | | | | 1.em | Cd2265 | Co2286 | Cr26 7 7 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | inits | ppm | ppm | ppm | ppm | ppm | mag | ppm | | wge | . 49084 | .99801 | 1.0129 | 1.0995 | 208.17 | 184.90 | 14.120 | | SDev | .00111 | .00014 | .0025 | .0008 | .19 | .01 | .029 | | RSD | . 22524 | .01354 | . 24457 | .07476 | .09336 | .00364 | . 20586 | | A anti- | | | | | | | | | LT. | . 49005 | .99792 | 1.0146 | 1.1001 | 208.31 | 184.90 | 14.140 | | 1 -j | .49162 | .99811 | 1.0111 | 1.0989 | 208.04 | 184.91 | 14.099 | | | ብሮ በ _ተ | 00 0 | 00 5 | 00.0 | 00 0 | | | | Errors
Malue | QC Pass
.50000 | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | | abge: | .10000 | 1.0000 | 1.0000 | 1.0000 | 210.00 | | 10.000 | | | . 10000 | .20000 | .20000 | . 20000 | 42.000 | | 5.0000 | | | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | A ES | ppm | mag | ppm | ppm | DDM | FULLUS | 201300 | | m.jo | 559.17 | 1.0363 | 1.0339 | 12.177 | .97395 | 1.0225 | 1.0194 | | | .62 | .0008 | .0026 | .086 | .00200 | .0056 | .0020 | | resp. | -11091 | .08082 | . 25305 | . 70830 | .20495 | .54345 | .19795 | | | • | | | | | · - · · | | | | 559.60 | 1.0369 | 1.0321 | 12.238 | .97536 | 1.0265 | 1.0180 | | | 558.73 | 1.0357 | 1.0358 | 12.116 | . 97254 | 1.0186 | 1.0208 | | | | | | | | | | | rrors | QC Pass | Callye: | 510.00 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | ange: | 102.00 | .20000 | . 20000 | 5.0000 | .20000 | . 20000 | . 20000 | | lem . | Sb2068 | Sp1900 | C × 401 E | T < 7740 | T11000 | W 0004 | 7.00.10 | | nits | | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | ivge | ppm
1.0446 | ppm
1.0454 | ppm
1.0356 | ppm | ppm
1 0745 | ppm | ppm | | SDev | .0061 | .0007 | .0025 | 1.0271 | 1.0365 | 1.0246 | .96633 | | RSD | .58765 | .06687 | .23938 | .0005
.05340 | .0007 | .0010 | .00164 | | | | , | . <u>2</u> 0700 | . 03340 | .06628 | .09766 | .16982 | | #1 | 1.0403 | 1.0459 | 1.0374 | 1.0274 | 1.0360 | 1.0253 | .96749 | | ‡ 2 | 1.0490 | 1.0449 | 1.0339 | 1.0267 | 1.0369 | 1.0233 | .96516 | | • | | · · · | | | ~ # WWW/ | | . / | | Errors | QC Pass | /alue | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000. | 1.0000 | 1.0000 | | Range | .20000 | .20000 | . 20000 | .20000 | .20000 | .20000 | .20000 | | Marine. | | | | | | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Sec. | | | | | | | | | Amalysis | Report | QC Sta | ndard | 07/27 | /00 10:49:1 | 16 AM | page 2 | |---|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---|------------------| | Units
Avge
SDev
%RSD | ppm
1.0270
.0058
.56100 | ppm
1.0203
.0055
.53463 | ppm
1.0288
.0036
.35372 | ppm
1.0147
.0012
.11910 | ppm
1.2812
.0025
.19828 | | | | #1
#2 | 1.0311
1.0229 | 1.0241
1.0164 | 1.0263
1.0314 | 1.0138
1.0155 | 1.2794
1.2830 | | | | Errors
Value
Range | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
.50000 | | | | IntStd
made
Elem
Wavlen
wye | 1
Counts
Y
371.030
9008 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED
 | | SDev
&RSD | 21.03505
.2335160 | A000- A000- | 1000 1000
1000 1000 | | 1000 1000
1000 1000 | 2300 MMc | 1000 Mar- | | #1
#2 | 8993
9023 | neer teer | tion when | *** | | *************************************** | More water | Lysis Report QC Standard 07/27/00 10:58:53 AM Operator: GSP page 1 od: 60102007 Sample Name: ICV/CCV Time: 07/27/00 10:53:58 ment: Corr. Factor: 1 | CU | inc corr. | ractor: 1 | | | | | | |----------------------------|-------------------|---------------------------------------|------------------|-----------------------|-------------------|-------------------|-------------------| | Elem | Ag3280 | A13082 | A=1900 | 0.0404 | 5-4574 | | | | inits | ppm | | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | avge . | .49191 | ppm
10.048 | ppm
.99959 | ppm
.99 689 | ppm
90745 | ppm | ppm | | SDev | .00096 | .091 | .00359 | .00291 | . 99369 | .50820 | 10.320 | | %RSD | .19430 | .91006 | . 35907 | . 29229 | .00233
.23475 | .00046 | .056 | | | | . >1000 | . 00 70 7 | . 27227 | . 234/3 | .08978 | . 54550 | | #1 | .49124 | 9.9831 | .99705 | . 99483 | .99204 | .50788 | 10.280 | | #2 | .49259 | 10.112 | 1.0021 | .99895 | .99534 | .50852 | 10.359 | | | | , , , , , , , , , , , , , , , , , , , | | . , , , , , | . > > 50-4 | . 50052 | 10.009 | | Errors | QC Pass | Value | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | | | | | | | | | | Elem | Cd2265 | Co2286 | Cr2677 | Cu 3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .51262 | 1.0093 | 1.0090 | . 98728 | 10.176 | 10.223 | 9.6238 | | SDev | .00008 | .0006 | .0008 | .00239 | .045 | . 035 | .0267 | | %RSD | .01642 | .06420 | . 08333 | . 24255 | . 43752 | . 33813 | .27712 | | #1 | .51268 | 1 0007 | 1 0000 | 00550 | 10 145 | 10.100 | 0 (0=0 | | #2 | .51256 | 1.0097
1.0088 | 1.0096
1.0084 | . 98558 | 10.145 | 10.198 | 9.6050 | | π 4
.: | .31230 | 1.0000 | 1.0084 | .98897 | 10.208 | 10.247 | 9.6427 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .50000 | 1.0000 | 1.0000 | 1.0000 | HOUHEUR | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | eren
Williams
German | | | | | | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni2316 | Pb2203 | Se1960 | | Units | ppm | ppm | ppm | mag | ppm | | | | Avge | 10.191 | 1.0092 | 1.0024 | 9.4756 | 1.0168 | 1.0162 | 1.0113 | | SDev | .078 | .0003 | .0058 | . 0639 | .0022 | .0041 | .0019 | | %RSD | .76428 | .03005 | .58114 | . 67472 | .21478 | .40426 | .18418 | | .ш.1 | 10 17/ | 1 0000 | ~~~~ | | | | | | #1
#2 | 10.136 | 1.0089 | . 99825 | 9.5208 | 1.0184 | 1.0191 | 1.0126 | | # ~ | 10.246 | 1.0094 | 1.0065 | 9.4304 | 1.0153 | 1.0133 | 1.0100 | | Errors | QC Pass | QC Pass | QC Pass | OC Do | OC D | 00 5 | 00 0 | | Value | 10.000 | 1.0000 | 1.0000 | QC Pass
10.000 | QC Pass
1.0000 | QC Pass
1.0000 | QC Pass
1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | | | | | .0.000 | 10.000 | 10.000 | 10.000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V 2924 | Zn2062 | | Units | ppm | mag | ppm | mag | ppm | ppm | ppm | | Avge | .97044 | 1.0139 | 1.0053 | . 98954 | 1.0039 | 1.0027 | 1.0338 | | SDev | .00927 | .0002 | .0032 | .00168 | .0032 | .0002 | .0023 | | %RSD | .95479 | .01907 | .31818 | .17022 | .32152 | .01538 | .21903 | | | | | | | | | | | #1 | . 96389 | 1.0138 | 1.0031 | . 98835 | 1.0062 | 1.0026 | 1.0354 | | #2 | . 97699 | 1.0140 | 1.0076 | . 99073 | 1.0016 | 1.0028 | 1.0322 | | Errora | 00 0000 | 00 0 | 00 0 | OO D | 00 5 | 00.0 | | | Errors
Value | QC Pass
1.0000 | QC Pass
1.0000 | QC Pass | QC Pass | QC Pass | QC Pass | QC Pass | | Range | 10.000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | ` | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem . | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | / - | | | | | | | | | * | | | | | | | |-------------------|----------------------------------|--|----------------------------------|----------------------------------|-----------------------------------|--------------|---------------------------------------| | | Report | QC Sta | ndard | 07/27 | /00 10:58: | 53 AM | page 2 | | | ppm
1.0089
.0012
.12215 | ppm
1.0198
.0068
.66425 |
ppm
1.0062
.0005
.04631 | ppm
1.0138
.0030
.29839 | ppm
.97280
.00294
.30236 | | | | | 1.0080
1.0097 | 1.0246
1.0150 | 1.0059
1.0066 | 1.0159
1.0116 | .97072
.97488 | | | | .) 5
.9
.38 | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | intetd
cite | 1
Counts | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | Υ | ······································ | *** | | ***** | **** | | | avlen | 371.030 | where have | *** | Appen Assets | since from | | *** | | Avge | 9941 | 100° 9111 | | ended bloom | *** | *** | - | | SDev | 8.253952 | we we | Mar valu | Apple and a | *** *** | 100 | | | Prov | .0830300 | | 100° 100° | na m | estar som | book apple | | | 3#1 | 9947 | | 1000- 1000- | mm me | ···· ··· | **** | · · · · · · · · · · · · · · · · · · · | | 2 | 9075 | ···· | **** | | | | | Report Blank Sample 07/27/00 11:03:56 AM Operator: GSP page 1 60102007 Sample Name: ICB/CCB **07/27/00** 10:59:01 CONC Corr. Factor: 1 | | S COTT. | ractor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|-------------------------------------|-------------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .00032 | .02460 | .00218 | .00271 | .00078 | .00039 | .02387 | | | .00020 | .01584 | .00081 | .00073 | .00032 | .00011 | .01447 | | | 62.053 | 64.399 | 37.125 | 26.969 | 41.611 | 28.936 | 60.643 | | Ž | .00018
.00047 | .01340
.03580 | .00161
.00275 | .00323
.00220 | .00055 | .00031 | .01363 | | incors | LC Pass | lagh | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | DW | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | lem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Vnits | ppm | Vge | .00040 | .00058 | .00088 | .00073 | .02289 | .01426 | .00251 | | Vav | .00011 | .00027 | .00023 | .00026 | .01164 | .00695 | .00376 | | SSD | 26.176 | 46.996 | 26.570 | 36.209 | 50.876 | 48.730 | 149.72 | | | .00033 | .00039
.00078 | .00071
.00104 | .00055
.00092 | .01465 | .00935
.01917 | 00015
.00517 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | LC Pass | LC Pass | | High | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Low | 00500 | 01000 | 00500 | 01000 | | 10000 | -1.0000 | | elem
Units
Avge
SDev
ERSD | Mg2790
ppm
.02439
.01870
76.685 | Mn2576
ppm
.00075
.00029
38.427 | Mo2020
ppm
.00177
.00004
2.2381 | Na3302
ppm
.01675
.04806
286.89 | Ni2316
ppm
.00137
.00050
36.162 | Pb2203
00007
.00048
648.02 | Se1960
00254
.00096
37.614 | | #1 | .01116 | .00055 | .00180 | 01723 | .00102 | 00041 | 00187 | | #2 | | .00096 | .00174 | .05074 | .00173 | .00026 | 00322 | | Errors | LC Pass | High | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00465 | .00285 | .00079 | .00105 | 00120 | .00062 | .00064 | | SDev | .00141 | .00068 | .00022 | .00030 | .00039 | .00038 | .00036 | | %RSD | 30.383 | 24.013 | 27.775 | 28.432 | 32.397 | 60.601 | 56.774 | | #1 | .00365 | .00333 | .00063 | .00084 | 00148 | .00036 | .00038 | | #2 | .00565 | .00236 | .00094 | .00126 | 00093 | .00089 | .00089 | | Errors | LC Pass | High | .05000 | .01000 | .00500 | .00500 | .01000 | .01000 | .02000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | palysis | Report | Blank | Sample | 07/27 | /00 11:03: | 56 AM | page 2 | |------------------------------|----------------------------------|-----------------------------------|----------------------------------|------------------------|-----------------------------------|-------------|-----------| | Units
Avge
Spay
RSD | ppm
00065
.00101
156.09 | ppm
.00021
.00122
571.43 | ppm
00317
.00284
89.425 | ppm
00223
.00002 | ppm
.00074
.00012
15.840 | | | | 11°
12° | .00007
00137 | 00065
.00108 | 00117
00518 | 00222
00224 | .00065
.00082 | | | | ich | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | 40.7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | 371_030 | | | 1004 1000 | 2000 April. | *** | | | | 9969 | **** | **** | **** | | | | | | 11.55471 | | | Wer were | ······ | | | | | .1139077 | **** | Mayor Made- | | stay pair | Sande sande | Man' ton' | | | 9977 | | *** | | | | | 07/27/00 11-00-00-0M ______ Operator: GSP ethod: 60102007 Sample Name: PBWPD064 Bun Time: 07/27/00 11:04:05 comment: dode: CONC Corr. Factor: 1 | Mode: C | ONC Corr. | Factor: J | L | | | | | |-----------------|------------------|---------------|------------------|------------------|---------------------------|-------------------|-------------------| | | | | | | | | | | æElem
∌Units | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Avge | ppm
00016 | ppm
.00407 | ppm | ppm | ppm | ppm | p pm | | SDev | .00032 | .00407 | .00201
.00093 | .00108 | .00012 | .00011 | .00317 | | %RSD | 194.32 | 235.26 | 46.177 | .00149
137.75 | .00 0 12
102.67 | .00004 | .00767 | | | | 200120 | 40.177 | 137.73 | 102.07 | 32.189 | 242.13 | | #1 | 00039 | 00270 | .00266 | .00003 | .00003 | .00009 | 00226 | | #2 | .00006 | .01083 | .00135 | .00213 | .00020 | .00014 | .00859 | | | | | | | | , | | | Errors | | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | | High | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | E-0714 | E-0500 | 12 T 2 2 4 | | Units | ppm | mad | ppm | ppm | Fe2714
ppm | Fe2599
ppm | K_7664
ppm | | Avge | .00012 | .00035 | .00018 | 00001 | .01042 | .00174 | 00837 | | SDev | .00018 | .00000 | .00055 | .00038 | .00478 | .00378 | .00744 | | RSD. | 147.17 | .12416 | 300.19 | 2928.3 | 45.919 | 216.87 | 88.876 | | | ¥ | | | | | | | | | 00001 | .00035 | 00020 | 00028 | .00704 | 00093 | 01362 | | 2 | .00025 | .00035 | .00057 | .00026 | .01380 | .00442 | 00311 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | I 0 D | 10.0 | | ligh | .00500 | .01000 | .00500 | .01000 | NOCHECK | LC Pass
.10000 | LC Pass
1.0000 | | LOW ' | 00500 | 01000 | 00500 | 01000 | | 10000 | -1.0000 | | | | | | | | | 1.0000 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | Units | ppm | ppm | ppm | ppm | mag | | | | evge : | .00668 | .00010 | 00005 | 03241 | .00065 | 00104 | 00243 | | SDev
HSD | .00812
121.63 | .00011 | .00025 | .02631 | .00072 | .00111 | .00020 | | | . 121.63 | 117.08 | 544.83 | 81.180 | 110.60 | 105.99 | 8.2610 | | 1 | .00093 | .00002 | 00022 | 01381 | .00014 | 00026 | 00257 | | 12 | .01242 | .00017 | .00013 | 05101 | .00117 | 00182 | 00229 | | | | | | | | | | | Errors | LC Pass | #igh# | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | L-OW | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | In2062 | | Units | ppm | ppm | ppm | ppm | ppm | V_2724
ppm | ppm | | evge . | .00321 | .00248 | .00012 | .00029 | 00186 | .00009 | 00013 | | 6Dev | .00251 | .00114 | .00014 | .00016 | .00158 | .00038 | .00018 | | RSD | 78.241 | 45.841 | 115.87 | 55.801 | 85.048 | 405.59 | 143.68 | | | | | | | | | | | #1 | .00498 | .00167 | .00002 | .00017 | 00074 | 00017 | 00026 | | | .00143 | .00328 | .00021 | .00040 | 00297 | .00036 | .00000 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | IC Bass | IC Door | | High | .05000 | .01000 | .00500 | .00500 | .01000 | LC Pass
.01000 | LC Pass
.02000 | | Lou | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | | | | | | | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | | | | | | | | | Units
Avge
SDev
\$RSD | ppm
.00027
.00069
260.90 | ppm
00170
.00200
118.13 | ppm
00227
.00444
195.17 | ppm
00251
.00191
76.322 | ppm
.00002
.00004
209.16 | | | |---|---|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|--------------|--------------------------| | #1
#2 | 00022
.00076 | 00028
00311 | 00541
.00086 | 00115
00386 | 00001
.00004 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | IntStd
sode
Jam
Vawlen
Avge
SDev
LRSD | 1
Counts
Y
371.030
9883
15.37543
.1555681 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED

 | | 391
372 | 9894
9873 | 1000 1000
1000 1000 | 1000° 1000° | Many Many | MANUF MANUFACTURE | 1000 W44 | Shops product | thod: 60102007 Sample Name: LCSWPD064 Operator: GSP n Time: 07/27/00 11:09:08 de: CONC Corr. Factor: 1 | 18 | | 1 40001 | • | | | | | |--|--|---|---|--|---|--------------------------------------|--------------------------------------| | lem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |
Jalts | ppm | Note | .47970 | 9.6322 | .96908 | .96929 | .97195 | .49318 | 9.8068 | | Spev | .00029 | .0172 | .00100 | .00409 | .00282 | .00064 | .0119 | | KRSD | .06112 | .17835 | .10301 | .42224 | .29046 | .13088 | .12170 | | 61 | .47950 | 9.6201 | .96838 | .96640 | . 96995 | .49272 | 9.7984 | | 62 | .47991 | 9.6444 | .96979 | .97219 | . 97395 | .49363 | 9.8152 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .49429 | .97521 | .97710 | .96634 | L9.7789 | 9.8334 | 9.4180 | | SDev | .00081 | .00171 | .00135 | .00270 | .0130 | .0163 | .0071 | | %RSD | .16380 | .17537 | .13845 | .27992 | .13331 | .16581 | .07555 | | #1 | .49372 | . 97400 | .97614 | . 96442 | L9.7697 | 9.8218 | 9.4130 | | #2 | .49486 | . 97642 | .97805 | . 96825 | L9.7881 | 9.8449 | 9.4230 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
9.6958
.0169
.17399 | Mn2576
ppm
.97645
.00161
.16459 | Mo2020
ppm
.98995
.00458
.46240 | Na3302
ppm
9.2203
.0153
.16626 | Ní2316
ppm
.98231
.00258
.26255 | Pb2203
.97770
.00241
.24677 | Se1960
.97786
.00098
.09986 | | #1 | 9.6839 | .97532 | .98671 | 9.2311 | .98048 | . 97599 | . 97717 | | #2 | 9.7077 | .97759 | .99318 | 9.2095 | .98413 | . 97940 | . 97 85 5 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .95684 | .99389 | .98202 | .98385 | .96977 | .97268 | .99063 | | SDev | .00539 | .00168 | .00281 | .00183 | .00150 | .00105 | .00024 | | %RSD | .56342 | .16912 | .28585 | .18629 | .15448 | .10804 | .02436 | | #1 | .95303 | .99270 | .98004 | . 98256 | . 97083 | .97194 | . 99 046 | | #2 | .96066 | .99507 | .98401 | . 98515 | . 96871 | .97342 | . 99080 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | LOW | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | ** ********************************** | 2203/1 | 2203/2 | 1960/1 | | | | | | C. C | | | |--|-------|--| | eis Re | | | | | DUT L | | | | | | 07/27/00 11:14:03 AM page 2 | 100 m | * | | | | | | | |---------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------|--------------| | | ppm
9.97346
1.00034
1.03457 | ppm
.97981
.00345
.35203 | ppm
.98084
.00089
.09118 | ppm
.97637
.00191
.19567 | ppm
.95905
.00236
.24661 | | | | | . 97323
. 97370 | . 97737
. 98225 | .98147
.98021 | . 97502
. 97773 | .95738
.96072 | | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | | | | | | | • | | | 1
Counts
Y | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | yylen
Hoje | 371.030
9882 | | 7000 ppt. | bear state | color score | 1000 1000
1000 1000 | | | SDEV
SRSD | 30.51539
.3087861 | ***** | where where | 4005- 2000.
4000- 4000. | 1000° 5000° | sager sager | widor Sports | | | 9904 | | course weeks | NEW NEW | uer tur | war wur | speen pools. | | 74 | 9861 | | Wer war | | **** **** | we an | | Dannet od: 60102007 Sample Name: 007546-1 Operator: GSP CONC Corr. Factor: 1 | | NC Corr. | Factor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|---|---| | QQp. | Ag3280
ppm
00018
.00017
94.568 | A13082
ppm
.01936
.00989
51.089 | As1890
ppm
.02619
.00250
9.5553 | B_2496
ppm
.33882
.00767
2.2648 | Ba4934
ppm
1.3280
.0158
1.1897 | Be3130
ppm
.00005
.00009
156.35 | Ca3179
ppm
132.90
2.63
1.9775 | | 2 | 00031
00006 | .02635
.01236 | .02796
.02442 | . 34424
. 33339 | 1.3392
1.3168 | .00011
00001 | 134.76
131.05 | | Serrors
ch | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | ren
rets
ce
ce
ce
ce | Cd2265
ppm
.00028
.00001
2.9956 | Co2286
ppm
.00132
.00020
15.213 | Cr2677
ppm
.00086
.00033
38.149 | Cu3247
ppm
.00108
.00010
9.2702 | Fe2714
ppm
L22.472
.387
1.7218 | Fe2599
ppm
22.879
.355
1.5505 | K_7664
ppm
10.730
.049
.45240 | | 2 | .00029
.00028 | .00147
.00118 | .00063 | .00101
.00115 | L22.746
L22.199 | 23.130
22.629 | 10.765
10.696 | | =irrors
dish
=ow | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | Elem
Units
Avge | Mg2790
ppm
41.736 | Mn2576
ppm
1.7179 | Mo2020
ppm
00562 | Na3302
ppm
46.354 | Ní2316
ppm
.00635 | Pb2203 | Se1960
.03044 | | SDev
ERSD | .849
2.0339 | .0321
1.8674 | .00058
10.402 | .312
.67262 | .00057
8.9418 | .00173 | .00421
13.833 | | #1
#2 | 42.337
41.136 | 1.7406
1.6952 | 00521
00604 | 46.574
46.133 | .00675
.00595 | .00367
.00122 | .02747
.03342 | | Errors
High
Low | LC Pass
500.00
50000 | LC Pass
25.000
01000 | LC Pass
50.000
01000 | LC Pass
100.00
-1.0000 | LC Pass
100.00
00500 | LC Pass
150.00
00500 | LC Pass
50.000
01000 | | Elem
Units
Avge
SDev
%RSD | Sb2068
ppm
03996
.00094
2.3616 | Sn1899
ppm
.07739
.00103 | Sr4215
ppm
.67523
.00772
1.1428 | Ti3349
ppm
.00196
.00022
ll.333 | T11908
ppm
L05926
.00321
5.4122 | V_2924
ppm
.00123
.00063
51.466 | Zn2062
ppm
.43511
.01080
2.4814 | | #1
+2 | 03929
04063 | .07666
.07812 | . 68069
. 66978 | .00212 | L05699
L06153 | .00078
.00168 | . 44275
. 42748 | | Errors
High
Low | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20.000
00500 | LC Low
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Units | ppm | ppm | ppm . | maga | ppm | | | |-----------------|----------|-------------|------------------|---------|-------------|-----------|--------------| | El yce | .00582 | .00076 | .01148 | . 03991 | .00112 | | | | S Jev | .00569 | .00544 | .00671 | .00296 | .00006 | | | | RSD | 97.827 | 718.09 | 58.510 | 7.4197 | 5.6230 | | | | 1 | .00179 | .00461 | .00673 | 07700 | 00117 | | | | | | | | .03782 | .00117 | | | | | .00984 | 00309 | .01623 | .04201 | .00108 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | High | | | | | | | | | | | | | | | | | | Sot Std | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Υ | ···· | *** | Mr. and | 3500° (460° | | | | Stavilen | 371.030 | | **** | per une | *** | the value | *** | | | 10014 | thing tops | war take | Mar him | ····· ···· | *** | **** | | TAKE T | 124.8907 | | politic relation | **** | | | *** | | 9 | 1.247143 | | 9944- base | *** | shop bear | ***** | often death. | | | | | | | | | | | | 9926 | **** | WAY VERY | *** | **** | *** | *** | | | 10102 | ries Anth. | 100° 1700 | **** | | ***** | | Operator: GSP thod: 60102007 Sample Name: 007546-1L Run Time: 07/27/00 11:19:14 comment: Node: CONC Corr. Factor: 1 | | | ractor. I | | | | | | |---|---|---|---|---|---|---|---| | Elem
Units
Avge
SDev | Ag3280
ppm
00010
.00023 | A13082
ppm
.00747
.00055 | As1890
ppm
.00524
.00177 | B_2496
ppm
.06903
.00057 | Ba4934
ppm
.26751
.00197 | Be3130
ppm
.00002
.00002 | Ca3179
ppm
28.491
.173 | | %RS D
#1
#2 | .00006
00026 | 7.3396
.00786
.00708 | 33.824
.00649
.00398 | .82264 | .73437
.26612 | 99.163 | .60757
28.368 | | Errors | LC Pass | LC Pass | LC Pass | .06863
LC Pass | .26890
LC Pass | .00003
LC Pass | 28.613
LC Pass | | High
Low | 10.000
00500 | 500.00 | 50.000
00500 | 50.000 | 25.000
01000 | 10.000 | 500.00 | | Elem
dnits
Avge
SDev
%RSD | Cd2265
ppm
.00004
.00038
1043.2 | Co2286
ppm
.00036
.00054
151.82 | Cr2677
ppm
.00077
.00023
30.127 | Cu3247
ppm
.00005
.00007
146.71 | Fe2714
ppm
L4.7241
.0335
.70986 | Fe2599
ppm
4.8078
.0306
.63726 | K_7664
ppm
1.8185
.0277
1.5225 | | #1
#2 | .00030 | .00074
00003 | .00061 | 00000
.00010 | L4.7004
L4.7478 | 4.7861
4.8295 | 1.7989
1.8380 |
| arors
Loh
COM | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | 2) em
Thits
Thits | Mg2790
ppm
8.7499 | Mn2576
ppm
.35587 | Mo2020
ppm
00144 | Na3302
ppm | N12316
ppm | Pb2203 | Se1960 | | SDev
RSD | .0487
.55625 | .00239 | .00132 | 8.4962
.1561
1.8378 | .00288
.00041
14.249 | .00038
.00038
98.406 | .00369
.00013
3.5463 | | #1
#2 | 8.7155
8.7843 | .35418
.35756 | 00238
00051 | 8.3858
8.6066 | .00317
.00259 | .00065 | .00360 | | Entors
High
Low | LC Pass
500.00
50000 | LC Pass
25.000
01000 | LC Pass
50.000
01000 | LC Pass
100.00
-1.0000 | LC Pass
100.00
00500 | LC Pass
150.00
00500 | LC Pass
50.000
01000 | | Elem
Convits
Awos
Spev
SRSD | Sb2068
ppm
00625
.00034
5.4805 | Sn1899
ppm
.01626
.00193
11.857 | Sr4215
ppm
.13613
.00091
.67066 | Ti3349
ppm
.00063
.00003
5.5769 | T11908
ppm
L01090
.00195
17.914 | V_2924
ppm
.00035
.00006
15.606 | Zn2062
ppm
.09441
.00052
.55478 | | Ż | 00601
00649 | .01490
.01763 | .13548
.13677 | .00065 | 00952
L01229 | .00039 | .09404
.09478 | | Errors
Ligh:
ON | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20.000
00500 | LC Low
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | 1.em: | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | Units
Avge
SDev
%RSD | ppm
.00064
.00200
313.49 | ppm
.00025
.00044
173.27 | ppm
00102
.00146
143.81 | ppm
.00604
.00093
15.330 | ppm
.00022
.00001
3.2924 | | | |-------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------|------------| | | | | | | | | | | #1 | .00205 | 00006 | .00002 | .00539 | .00021 | | | | #2 | 00078 | .00056 | 00205 | .00670 | .00022 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHEON | NOOUTOK | | | | High
Low | HOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | *** | and then | **** | | | | | Wavlen | 371.030 | state, feeth- | ***** | Name were | 1550° 1466° | | *** | | Avge | 10066 | w. | some sales. | min Min. | 2000 Apres | owe tear | men dien. | | SDev | 41.50454 | - | page. Man | | **** **** | MARY EVEN | Many Spin' | | *RSD | .4123229 | ···· | 1999' 1200" | 1500- 13500 | 1984° 1911. | an an | ···· | | | | | | | | | | | #1 | 10095 | - | derv. abet. | MAY 1447 | 1834 - 4447 | www. | *** | | #2 | 10037 | mar 1110 | within these | M27, 7885. | ···· | *** | **** | **60102007** Sample Name: 007546-1S Operator: GSP me: 07/27/00 11:24:17 CONC Corr. Factor: 1 | | | | • | | | | | |---|---|---|---|---|--|---|---| | Par
RSD | Ag3280
ppm
.43003
.01486
3.4552 | A13082
ppm
9.7132
.3162
3.2555 | As1890
ppm
1.0564
.0317
3.0013 | B_2496
ppm
1.3008
.0376
2.8942 | Ba4934
ppm
2.2602
.0666
2.9469 | Be3130
ppm
.49193
.01597
3.2456 | Ca3179
ppm
137.97
3.49
2.5264 | | 1
2 | .41953
.44054 | 9.4896
9.9368 | 1.0340
1.0788 | 1.27 42
1.3275 | 2.2131
2.3073 | .48064
.50321 | 135.51
140.44 | | Enrors
High
Low | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.46980
.01424
3.0303 | Co2286
ppm | Cr2677
ppm
.96285
.03223
3.3472 | Cu3247
ppm
.98625
.03174
3.2184 | Fe2714
ppm
L31.302
.862
2.7540 | Fe2599
ppm
31.544
.862
2.7342 | K_7664
ppm
21.834
.614
2.8108 | | #1
#2 | .45973
.47987 | .93186
.97273 | .94006
.98564 | .96381
1.0087 | L30.692
L31.911 | 30.934
32.154 | 21.400
22.268 | | Errors
High
Low | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | | | | | | | | | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
50.104
1.231
2.4568 | Mn2576
ppm
2.6189
.0722
2.7562 | Mo2020
ppm
.95698
.03513
3.6714 | Na3302
ppm
56.382
1.296
2.2989 | Ni2316
ppm
.95043
.03276
3.4471 | Pb2203
.94278
.02170
2.3023 | Se1960
1.2208
.0363
2.9726 | | Units
Avge
SDev | ppm
50.104
1.231 | ppm
2.6189
.0722 | ppm
.95698
.03513 | ppm
56.382
1.296 | ppm
.95043
.03276 | .94278
.02170 | 1.22 08
.0363 | | Units
Avge
SDev
%RSD | ppm
50.104
1.231
2.4568 | ppm
2.6189
.0722
2.7562
2.5679 | ppm
.95698
.03513
3.6714 | ppm
56.382
1.296
2.2989
55.466 | ppm
.95043
.03276
3.4471 | .94278
.02170
2.3023
.92743 | 1.2208
.0363
2.9726 | | Units Avge SDev %RSD #1 #2 Errors High | ppm
50.104
1.231
2.4568
49.234
50.975
LC Pass
500.00 | ppm
2.6189
.0722
2.7562
2.5679
2.6700
LC Pass
25.000 | ppm
.95698
.03513
3.6714
.93214
.98183
LC Pass
50.000 | ppm
56.382
1.296
2.2989
55.466
57.299
LC Pass
100.00 | ppm
.95043
.03276
3.4471
.92727
.97360
LC Pass
100.00 | .94278
.02170
2.3023
.92743
.95812
LC Pass
150.00 | 1.2208
.0363
2.9726
1.1951
1.2464
LC Pass
50.000 | | Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SDev | ppm
50.104
1.231
2.4568
49.234
50.975
LC Pass
500.00
50000
Sb2068
ppm
.62830
.16454 | ppm
2.6189
.0722
2.7562
2.5679
2.6700
LC Pass
25.000
01000
Sn1899
ppm
.70962
.04467 | ppm
.95698
.03513
3.6714
.93214
.98183
LC Pass
50.000
01000
Sr4215
ppm
1.6385
.0531 | ppm
56.382
1.296
2.2989
55.466
57.299
LC Pass
100.00
-1.0000
Ti3349
ppm
.95428
.02765 | ppm
.95043
.03276
3.4471
.92727
.97360
LC Pass
100.00
00500
T11908
ppm
.90725
.02003 | .94278
.02170
2.3023
.92743
.95812
LC Pass
150.00
00500
V_2924
ppm
.98196
.03127 | 1.2208
.0363
2.9726
1.1951
1.2464
LC Pass
50.000
01000
Zn2062
ppm
1.3514
.0393 | | Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SDev %RSD #1 | ppm
50.104
1.231
2.4568
49.234
50.975
LC Pass
500.00
50000
Sb2068
ppm
.62830
.16454
26.188 | ppm
2.6189
.0722
2.7562
2.5679
2.6700
LC Pass
25.000
01000
Sn1899
ppm
.70962
.04467
6.2947 | ppm
.95698
.03513
3.6714
.93214
.98183
LC Pass
50.000
01000
Sr4215
ppm
1.6385
.0531
3.2414 | ppm
56.382
1.296
2.2989
55.466
57.299
LC Pass
100.00
-1.0000
Ti3349
ppm
.95428
.02765
2.8971 | ppm
.95043
.03276
3.4471
.92727
.97360
LC Pass
100.00
00500
T11908
ppm
.90725
.02003
2.2079 | .94278
.02170
2.3023
.92743
.95812
LC Pass
150.00
00500
V_2924
ppm
.98196
.03127
3.1848 | 1.2208
.0363
2.9726
1.1951
1.2464
LC Pass
50.000
01000
Zn2062
ppm
1.3514
.0393
2.9082
1.3236 | | \$\$\delta\$ | | | | | | | |--|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------
--|---------------------------| | ppm
.94733
.01809
1.9091 | ppm
.94050
.02351
2.5000 | ppm
1.2055
.0310
2.5738 | ppm
1.2284
.0389
3.1681 | ppm
.98831
.03970
4.0168 | | | | .93454
2.96012 | .92388
.95713 | 1.1836
1.2275 | 1.2008
1.2559 | .96023
1.0164 | | | | * Nocheck | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | 1 (44)
1 (44)
2 (4) | | 1
Counts
Y
371.030
10142
189.2691 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED

 | 6
NOTUSED | 7
NOTUSED | | 1.866148 | 400° vano | **** | 1640-1660- | Alter John | Apple 2000- | 1000 0000 | | 10276 | | | **** **** | *** | NAME AND THE PERSON A | war wait | thod: 60102007 Sample Name: 007546-1SD 1 Time: 07/27/00 11:29:21 1 CONC Corr. Factor: 1 Operator: GSP | 1 | | | | | | | | |---|---|--|---|---|---|----------------------------|-------------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .44367 | 9.6852 | 1.0526 | 1.3058 | 2.2811 | .48680 | 139.17 | | | .00456 | .0036 | .0014 | .0013 | .0086 | .00122 | .41 | | | 1.0281 | .03756 | .13289 | .09943 | .37554 | .25094 | .29211 | | 2 | .44690 | 9.6826 | 1.0516 | 1.3067 | 2.2751 | . 48593 | 138.88 | | | .44045 | 9.6878 | 1.0536 | 1.3048 | 2.2872 | . 48766 | 139.46 | | iciiors | LC Pass | 1911 | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | 1911 | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Lem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Touts | ppm | Yea | .46483 | .94055 | .95320 | .98352 | L31.465 | 31.733 | 22.085 | | Yeav | .00101 | .00162 | .00316 | .00164 | .024 | .058 | .100 | | Red | .21676 | .17181 | .33200 | .16690 | .07773 | .18383 | .45406 | | 2 | . 46412 | .93940 | . 95096 | . 98235 | L31.447 | 31.692 | 22.014 | | | . 46554 | .94169 | . 95544 | . 98468 | L31.482 | 31.774 | 22.156 | | Erfors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | Jigh | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Entra Maria | Mg2790
ppm
50.527
.055
.10871 | Mn2576
ppm
2.6302
.0062
.23665 | Mo2020
ppm
.96774
.00628
.64911 | Na3302
ppm
57.168
.183
.32085 | Ní2316
ppm
.94146
.00049
.05207 | .92921
.00119
.12850 | Se1960
1.2087
.0032
.26214 | | 71 | 50.488 | 2.6258 | .96330 | 57.039 | .94111 | . 93005 | 1.2065 | | 72 | 50.566 | 2.6346 | .97218 | 57.298 | .94181 | . 92837 | 1.2109 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .67351 | .72438 | 1.6483 | .96614 | .89759 | .97320 | 1.3371 | | SDev | .08689 | .00454 | .0054 | .00101 | .00239 | .00310 | .0023 | | BRSD | 12.901 | .62663 | .33027 | .10423 | .26620 | .31813 | .17346 | | #1 | .61207 | .72117 | 1.6444 | . 96 54 3 | . 89591 | .97101 | 1.3 354 | | #2 | .73495 | .72759 | 1.6521 | . 96686 | . 89928 | .97539 | 1.3387 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | All Parks | | | | | | | | |---------------|----------|-----------|---------|-----------|-------------|-------------|------------| | Units | ppm | ppm | ppm | mqq | ppm | | | | Avge | . 93276 | . 92744 | 1.2045 | 1.2108 | . 99767 | | | | SDev | . 00755 | .00556 | .0082 | .0006 | .00124 | | | | *RSD | .80989 | . 59968 | . 68333 | .05297 | .12416 | | | | #1 | .92742 | .93137 | 1.1987 | 1.2104 | . 99854 | | - | | #2 | .93810 | .92350 | 1.2103 | 1.2113 | . 99679 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | High
Low | | | | | | | | | | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Mili m | Y | - | ***** | 1967 1404 | 1100° 3100° | **** | 100 100 | | e len | 371.030 | | | **** | som was | salar salar | met. 4154- | | Parket in | 10001 | | | | **** | Mark 11700 | Walf | | | 2.122011 | w | *** | **** | | *** | | | | .0212185 | upor 1000 | www. | **** | **** **** | *** | ···· | | | * | | | | | | | | | 9999 | ···· | **** | | 9041 50m | ame, ser. | AMP MAN | | | 10002 | | **** | **** | ww 1000 | w | | | | | | | | | | | alvsis Report thod: 60102007 Sample Name: 007546-2 Operator: GSP in Time: 07/27/00 11:34:24 comment: Mode: CONC Corr. Factor: 1 | -18 | | | | | | | | |----------|---------|-------------------|-------------------|---------|-------------------|-------------------|-------------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | mag | mag | ppm | ppm | ppm | ppm | | Avge | 00012 | .01103 | .01017 | .19252 | 1.1150 | .00019 | 88.477 | | SDev | .00015 | .00827 | .00060 | . 00894 | .0448 | .00014 | 3.919 | | %RSD | 117.88 | 74.984 | 5.9156 | 4.6423 | 4.0166 | 70.424 | 4.4296 | | ent. | | | | | | | | | #1 | 00023 | .01688 | .00974 | .19884 | 1.1467 | .00029 | 91.248 | | #2 | 00002 | .00518 | .01060 | .18620 | 1.0833 | .00010 | 85.706 | | | | | | | | | | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | | | | | | - 0500 | 12 72 2 4 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | ppm | ppm | ppm | ppm |
ppm
01/45 | ppm
9.6304 | | Avge | .00032 | .00036 | .00068 | .00181 | L.02325
.00054 | .01645
.00203 | .3022 | | SDev | .00001 | .00027 | .00032 | .00031 | 2.3270 | 12.350 | 3.1380 | | %RSD | 2.7013 | 75.827 | 46.440 | 17.160 | 2.32/0 | 12.000 | 0.1000 | | 6 # 1 | .00033 | .00055 | . 00046 | .00202 | L.02286 | .01789 | 9.8441 | | #1
#2 | .00032 | .00016 | .00040 | .00202 | L.02363 | .01501 | 9.4168 | | | .00032 | .00016 | .00071 | .00157 | L. 02000 | . 01001 | × 1 1 1 2 2 2 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20,000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | | | | | | | | | Elem * | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni 2316 | Pb2203 | Se1960 | | inits | ppm | ppm | ppm | ppm | ppm | | | | evce: | 47.087 | .00758 | .00187 | 45.579 | .00306 | .00070 | .00955 | | SDev | 2.058 | .00054 | .00058 | 1.803 | .00013 | .00030 | .00237 | | RSD | 4.3707 | 7.1143 | 30.798 | 3.9567 | 4.3011 | 42.439 | 24.807 | | | | | | | | | 21107 | | #1 | 48.542 | .00796 | .00228 | 46.854 | .00315 | .00049 | .01123 | | #2 | 45.631 | .00720 | .00146 | 44.304 | .00297 | .00091 | .00787 | | | | | | LC Pass | LC Pass | LC Pass | LC Pass | | Errors | LC Pass | LC Pass
25.000 | LC Pass
50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | digh | 500.00 | 01000 | 01000 | -1.0000 | 00500 | - 00500 | 01000 | | LOW | 50000 | ···. 01000 | ,01000 | 1.0000 | .0050 | • • • • • • | | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | ppm | ppm | mqq | ppm | ppm | ppm | | Avge | 00725 | .02344 | .18298 | .00125 | L01714 | .00294 | . 37994 | | SDev | .00119 | .00300 | .00770 | .00014 | .00028 | .00006 | .01687 | | ≱RSD | 16.456 | 12.811 | 4.2071 | 11.116 | 1.6580 | 1.9837 | 4.4394 | | | | | | | | | 70151 | | #1 | 00641 | .02556 | .18842 | .00135 | L01734 | .00298 | .39186 | | #2 | 00810 | .02131 | . 17753 | .00115 | L01694 | .00290 | .36801 | | | | | | 10 0 | 10 1-0 | I C Dogg | IC Dage | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass
100.00 | LC Pass
50.000 | | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 01000 | 02000 | | MACHIN ! | 05000 | 01000 | 00500 | 00500 | 01000 | | .02000 | | | 220771 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | Elem : | 2203/1 | 2203/2 | T 200/ T | 1700/2 | w x w / V / | | | | nits. | ppm | ppm | ppm | ppm | ppm | | | |----------------|------------|----------|--|--------------------------|-----------|------------|------------| | B vge | 00074 | .00142 | .00678 | .01093 | .00363 | | | | Dev . | .00027 | .00058 | .00110 | .00300 | .00035 | | | | RED: | 35.920 | 40.739 | 16.199 | 27.472 | 9.6143 | | | | 9 12 | 00055 | .00101 | .00756 | .01306 | .00388 | | | | #2 | 00093 | .00183 | .00600 | .00881 | .00338 | | | | Errors
High | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | LOW | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | . Y | | ······································ | MF 1607 | | www war | | | Wavlen | 371.030 | ww 1444- | ***** ***** | solder sidese | | **** | *** **** | | Avge | 10030 | *** | | 196e 1884 | **** | | | | SDev | 389.6690 | *** | ***** | contraction and a second | | - | | | *RSD | 3.885004 | we we | **** | mt. nm | 100F 101F | 1860° bear | WAS WAS | | # 1 | 9755 | - | tige time | \$440° 1866° | WAY 1884 | seen peer | Week 1990. | | #2 | 10306 | *** | week bloke | | **** | *** | 1000 Febr | 17/07/00 11-44-09 AM- **\$0102007** Sample Name: 007546-3 **07/27**/00 11:39:27 NC Corr. Factor: 1 | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|---|---|---|---|---|---------------------------|--------------------------------------| | | ppm | | 00000 | .33471 | .00691 | .27986 | .84743 | 00001 | 51.844 | | | .00031 | .00295 | .00031 | .00025 | .00261 | .00002 | .269 | | | 23159. | .88161 | 4.4708 | .08873 | .30798 | 208.03 | .51936 | | | 00022 | .33262 | .00713 | .28004 | .84559 | .00001 | 51.654 | | | .00021 | .33679 | .00669 | .27969 | .84928 | 00003 | 52.035 | | ercors | LC Pass | Sigh | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Zow | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | lem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Lyge | .00011 | .00071 | .00298 | .01732 | L.38352 | .37399 | H107.58 | | SDev | .00002 | .00042 | .00015 | .00007 | .00559 | .00826 | .53 | | LRSD | 21.396 | 60.060 | 5.1687 | .43444 | 1.4570 | 2.2083 | .49372 | | #1
#2 | .00009 | .00041 | .00309
.00287 | .01726
.01737 | L.37956
L.38747 | .36815
.37983 | H107.20
H107.96 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC High | | Aigh | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
&RSD | Mg2790
ppm
28.829
.130
.45085 | Mn2576
ppm
.03454
.00007
.20996 | Mo2020
ppm
.00446
.00073
16.276 | Na3302
ppm
34.958
.186
.53242 | Ni2316
ppm
.00803
.00026
3.2333 | Pb220300012 .00089 723.60 | Se1960
.00821
.00304
37.081 | | #1 | 28.737 | .03449 | .00497 | 34.827 | .00785 | 00075 | .010 3 6 | | #2 | 28.921 | .03459 | .00395 | 35.090 | .00821 | .00051 | .00 60 5 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 00575 | .01916 | .15115 | .01160 | L01065 | .00330 | .19160 | | SDev | .00214 | .00083 | .00039 | .00044 | .00060 | .00018 | .00122 | | %RSD | 37.188 | 4.3352 | .25637 | 3.8333 | 5.6061 | 5.3570 | .63714 | | #1 | 00726 | .01857 | .15087 | .01129 | L01023 | .00317 | .19074 | | #2 | 00424 | .01975 | .15142 | .01192 | L01107 | .00342 | .19246 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | DDD | Mh. Mh. ma | | | | | | |----------|-------------|-------------|---|------------|--|---------| | ppm | ppm | ppm | ppm | ppm | | | | 00177 | .00070 | . 00477 | . 00992 | .00326 | | | | .00049 | .00109 | .00634 | .00140 | .00005 | | * | | 27.799 | 154.94 | 132.86 | 14.099 | 1.4254 | | | | 00212 | 00007 | .00925 | .01091 | .00329 | | | | 00143 | .00147 | .00029 | . 00893 | .00322 | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | ¥ Y | 1000 1000 | *** | · • • • • • • • • • • • • • • • • • • • | | *** | | | 371.030 | - | *** | **** | 1482 1480° | Total banks | | | 10305 | Min' van | - | ··· | | | | | 15.94167 | | *** | total quay- | ***** **** | *** | | | .1546961 | *** | **** | 2000 eccu | | | | | 10294 | *** | 1980- 1990- | 400° 500° | | ************************************** | ***** | | 10316 | - | **** | wer war | **** | | *** | thod: 60102007 Sample Name: 007546-4 in Time: 07/27/00 11:44:30 inherit: de: CONC Corr. Factor: 1 Operator: GSP | Le. Co | ne corr. | ractor: 1 | | | | | | |-----------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------| | Elem
Units
Avce | Ag3280
ppm
00008 | A13082
ppm | As1890
ppm | B_2496
ppm | Ba4934
ppm | Be3130
ppm | Ca3179 | | SDSV | .00009 | .12866 | .00737 | . 21303 | . 27823 | .00001 | 76.550 | | RSD | | .00066 | .00067 | .00333 | .00149 | .00002 | . 380 | | - NOD | 105.28 | .51049 | 9.1074 | 1.5653 | . 53668 | 174.83 | . 49600 | | 1 | 00002 | .12820 | .00689 | .21067 | .27718 | .00003 | 76.282 | | ¹² . | 00014 | .12913 | .00784 | .21538 | .27929 | 00000 | 76.819 | | Errors | LC Pass | Hugh | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | COM | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem! | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | E First | ppm | ppm | mag | ppm | ppm | ppm | ppm | | Sevige : | .00000 | .00057 | .00140 | .01073 | L.14674 | .13683 | 20.082 | | Dev | -00000 | .00033 | .00031 | .00010 | .00109 | .00115 | .117 | | RED | 7.7358 | 57.349 | 21.900 | . 94331 | .74228 | .84182 | . 58099 | | | .00000 | .00034 | .00118 | .01066 | L.14597 | .13764 | 19.999 | | 2 | .00000 | .00080 | .00162 | .01080 | L.14751 | .13601 | 20.164 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | agh:≰ | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Estéan? | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni2316 | Pb2203 | Se1960 | | in its | ppm | ppm | ppm | ppm | mag | | | | Nige | 50.665 | .10490 | .00077 | 42.542 | .00550 | .00080 | .01231 | | BUBY | . 231 | .00043 | .00008 | . 349 | .00008 | .00216 | .00277 | | | .45569 | . 40682 | 10.617 | .81938 | 1.5232 | 270.40 | 22.507 | | Si te | 50.502 | .10460 | .00083 | 42.296 | .00544 | 00073 | .01035 | | 12 | 50.828 | .10521 | .00071 | 42.789 | .00556 | .00233 | .01427 | | Errors | LC Pass | digh' | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | LOW |
50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | ppm | mag | ppm | mag | ppm | ppm | | Avge | 00749 | .02410 | . 20996 | .00514 | L01630 | .00191 | .18404 | | SDev | .00173 | .00164 | .00118 | .00003 | .00157 | .00006 | .00112 | | **RSD | 23.031 | 6.8109 | . 56279 | . 50057 | 9.6423 | 3.2935 | . 60994 | | #1 | 00872 | .02294 | .20912 | .00516 | L01519 | .00187 | . 18325 | | # 2 | 00627 | .02526 | .21079 | .00512 | L01741 | .00196 | .18484 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | | | | | | | | | 23 | | | | | | | | |-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------|-------------| | Units
Avge
SDev | ppm
.00046
.00054 | ppm
.00097
.00297 | ppm
.00917
.00479 | ppm
.01388
.00176 | ppm
.00185
.0006 | | | | ***RSD | 117.85 | 306.19 | 52.245 | 12.700 | 2.9742 | | | | #1 | .00008 | 00113 | .00578 | .01264 | .00181 | | | | #2 | .00084 | .00307 | .01256 | .01513 | .00189 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem . | Y | tur | **** | **** | war terr | | | | Maule n | 371.030 | *** | | - | tool Mar | **** | *** | | | 10062 | *** | **** | *** | ***** | we we | **** | | ESTAV | 3.30144 3 | tops and | - | *** | | - | **** | | SSD. | .0328111 | 1000- 1000- | took shaki | 1000 1000 | **** | | | | Tria : | 10064 | ***** | was now | sola- stee- | *** | *** | war war | | 12 | 10060 | with some | 1064* 8664* | **** **** | **** | **** | *** | thod: 60102007 Sample Name: 007551-1 in Time: 07/27/00 11:49:33 comment: ode: CONC Corr. Factor: 1 Operator: GSP | | | | • | | | | | |---------------------------------------|---|---|---|---|---|----------------------------|---| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00024 | .01427 | .00714 | .17460 | 1.0175 | .00001 | 161.81 | | SDev | .00026 | .00002 | .00085 | .00047 | .0081 | .00000 | .49 | | * RSD | 106.44 | .16919 | 11.834 | .26809 | .79287 | 21.731 | .30034 | | #1 | .00006 | .01429 | .00654 | .17427 | 1.0118 | .00002 | 161. 4 7 | | #2 | .00042 | .01425 | .00774 | .17493 | 1.0232 | | 162.15 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00045 | .00214 | .00086 | .00438 | L.02068 | .00947 | 12.298 | | SDev | .00030 | .00002 | .00015 | .00015 | .00104 | .00042 | .120 | | %RSD | 66.214 | 1.1091 | 17.815 | 3.5314 | 5.0290 | 4.4533 | .97522 | | #1 | .00065 | .00215 | .00075 | .00427 | L.01994 | .00917 | 12.213 | | #2 | | .00212 | .00097 | .00449 | L.02141 | .00977 | 12.383 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
72.197
.274
.37909 | Mn2576
ppm
.08505
.00034
.40289 | Mo2020
ppm
.00133
.00088
65.980 | Na3302
ppm
50.034
.261
.52258 | Ní2316
ppm
.01373
.00059
4.2726 | .00058
.00064
109.61 | Se1960
.00917
.00095
10.395 | | #1
#2 | 72.003
72.390 | .08481 | .00071
.00195 | 49.849
50.219 | .01414 | .00013 | .00984
.00849 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 00660 | .01524 | .33056 | .00016 | L01080 | .00109 | .33605 | | SDev | .00105 | .00034 | .00195 | .00002 | .00069 | .00019 | .00027 | | KRSD | 15.860 | 2.2407 | .59064 | 14.554 | 6.4000 | 17.099 | .08116 | | #1 | 00586 | .01549 | .32918 | .00018 | L01129 | .00096 | . 33586 | | #2 | 00735 | .01500 | .33194 | .00015 | L01031 | .00122 | . 33624 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | Wigh | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | OW | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem (| 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | e de la companya de
La companya de la co | | Mr. Maria | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | · . | 48. | |-----------|---------------------------------------|----------|------| | 200 | | n | | | 10.19 | els. | ~ | nnrr | | | | | | 07/27/00 11:54:28 AM page 2 | linkte: | pom | n.m. | n.m | | | | | |---------|----------|----------|------------|--------------|----------|--------------|------------| | | | ppm | ppm | ppm | ppm | | | | 44.7% | .00186 | 00006 | .00665 | .01043 | .00775 | | | | | .00029 | .00081 | .00603 | .00158 | .00012 | | | | RSD | 15.544 | 1351.7 | 90.734 | 15.173 | 1.5197 | | | | | | | | | | | | | | .00166 | 00063 | .01091 | .00931 | .00767 | | | | 2 | .00207 | .00051 | .00238 | .01155 | .00783 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | MOOHEOK | HOOHEOK | | | | de an | HOUTEON | HOUHEUK | NOCHECK | NOCHECK | NOCHECK | | | | P P W | | | | | | | | | | | | | | | | | | IntStd | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | | The sale | | | | | | Wavlen | 371.030 | *** | **** | 4000° \$400° | Mary war | | *** | | Avge | 10113 | **** | | was view | **** WLD | 3900F \$6641 | | | SDev | 12.45171 | Men arte | *** | **** | 400 000 | war war | eac ear | | *RSD | .1231243 | the sec | men alle. | **** 344* | NAME AND | 1000° 1100° | Many 19889 | | | | | | | | | | | #1 | 10122 | **** | ASSET SOOP | sales sales | mer two | **** **** | **** | | #2 | 10104 | *** | - | 1000 1000 | **** | HAVE SQUE | **** | | | | | | | | | | Report QC Standard 07/27/00 11:59:31 AM page 1 Operator: GSP 60102007 Sample Name: ICV/CCV : 07/27/00 11:54:36 NC Corr. Factor: 1 | A-V F | C | | | | | | | |-------------------------------|----------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .49413 | 10.052 | 1.0007 | 1.0008 | 1.0051 | .50351 | 10.242 | | | .000 82
.16679 | .015
.14635 | .0030
.29537 | .0012
.11726 | .0001 | .00092
.18303 | .003 | | | .49471
.49355 | 10.042
10.063 | 1.0027
.99856 | 1.0000 | 1.0052
1.0050 | .50285
.50416 | 10.240
10.244 | | eErrors | QC Pass | Value | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 . | | Units
Avge
SDev
ARSD | .50417
.00155
.30756 | ppm
1.0010
.0023
.22528 | ppm
.99946
.00070
.07048 | ppm
.99680
.00036
.03586 | ppm
10.078
.020
.19975 | ppm
10.143
.016
.15590 | ppm
9.8488
.0113
.11515 | | #1 | .50307 | .99936 | . 99896 | . 99705 | 10.064 | 10.132 | 9.8568 | | #2 | .50526 | 1.0025 | . 99996 | . 99655 | 10.092 | 10.154 | 9.8408 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .50000 | 1.0000 | 1.0000 | 1.0000 | | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | Elem
Units
Avge | Mg2790
ppm
10.135 | Mn2576
ppm
1.0015 | Mo2020
ppm
.99647 | Na3302
ppm
9.6279 | Ni2316 | Pb2203 | Se1960 | | SDev
3RSD | .001 | .0013 | .00690 | .0522 | 1.0017
.0010
.10238 | .99924
.00171
.17082 | 1.0173
.0011
.10985 | | #1 | 10.134 | 1.0006 | .99159 | 9.66 48 | 1.0010 | 1.0004 | 1.0165 | | #2 | 10.135 | | 1.0014 | 9.5910 | 1.0024 | .99803 | 1.0181 | | Errors | QC Pass | Value | 10.000 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .97278 | 1.0070 | 1.0137 | .98904 | 1.0010 | .99767 | 1.0078 | | SDev | .00972 | .0038 | .0016 | .00073 | .0025 | .00021 | .0022 | | %RSD | .99905 | .38224 | .15915 | .07388 | .25394 | .02108 | .21661 | | #1 | .96591 | 1.0042 | 1.0125 | . 98852 | .99917 | .99753 | 1.0063 | | #2 | .97965 | 1.0097 | 1.0148 | . 98956 | 1.0028 | .99782 | 1.0094 | | Errors | QC Pass | Value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Spakysis | Report | QC Standard | | 07/27 | /00 11:59: | 31 AM | page 2 | | |-----------------------|----------|-------------|-------------|-----------|-----------------------------|------------|----------|--| | | ppm | ppm | mag |
mag | mag | | | | | | . 99890 | .99941 | 1.0228 | 1.0145 | .98926 | | | | | | .00286 | .00113 | .0077 | .0055 | .00115 | | | | | EGD. | . 28632 | .11318 | .75246 | . 54387 | .11660 | | | | | | 1.0009 | 1.0002 | 1.0283 | 1.0106 | . 98844 | | | | | | . 99688 | .99861 | 1.0174 | 1.0184 | . 99007 | | | | | richs
Sub
Stepe | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | | in tate | 1 | 2 | . 3 | 4 | 5 | 6 | 7 | | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | | Y | | | | 11010000 | 11010000 | 11010320 | | | and the same | 371.030 | alon della | 4000- 51461 | ···· | *** | - | - | | | | 9839 | ton ton | **** | | | | | | | | 28.58120 | W | and door. | **** | | *** | | | | | .2904894 | . *** | Appr. 2000. | 900a 900a | , , , | , | | | | | 9819 | **** | www. | **** | telle seite | Mater Same | ······ · | | Diant Commin 9859 07/07/00 - 10-04--74 - DM palysis Report Blank Sample 07/27/00 12:04:34 PM Operator: GSP page 1 thod: 60102007 Sample Name: ICB/CCB in Time: 07/27/00 11:59:39 omment: oda: CONC Corr. Factor: 1 | | .,,, | 1 40 101 | • | | | | | |---|--|--|--|---|---|---|--| | Elem
Units
Avge
SDev
&RSD | Ag3280
ppm
.00050
.00022
44.705 | A13082
ppm
.02492
.00279
11.199 | As1890
ppm
.00301
.00217
71.862 | B_2496
ppm
.00289
.00015
5.1837 | Ba4934
ppm
.00092
.0006
7.0480 | Be3130
ppm
.00041
.0005
11.097 | Ca3179
ppm
.03634
.00250
6.8712 | | #1
#2. | .00066 | .02295
.02689 | .00148
.00455 | .00279
.00300 | .00088
.00097 | .00037
.00044 | .03457
.03810 | | irrors
ign
ou | LC Pass
.00500
00500 | LC Pass
.10000
10000 | LC Pass
.00500
00500 | LC Pass
.10000
10000 | LC Pass
.01000
01000 | LC Pass
.00300
00300 | LC Pass
.50000
50000 | | SM
Filts
Avge
SDev
SRSD | Cd2265
ppm
.00045
.00012
26.964 | Co2286
ppm
.00120
.00000
.34122 | Cr2677
ppm
.00132
.00016
12.094 | Cu3247
ppm
.00065
.0006
9.3065 | Fe2714
ppm
.02252
.00262
11.643 | Fe2599
ppm
.01363
.00051
3.7716 | K_7664
ppm
.00933
.00008
.81651 | | #1
#2 | .00053 | .00120
.00120 | .00121
.00144 | .00069 | .02067
.02438 | .01326
.01399 | .00928 | | Errors
High
Of | LC Pass
.00500
00500 | LC Pass
.01000
01000 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | NOCHECK | LC Pass
.10000
10000 | LC Pass
1.0000
-1.0000 | | | | | | | | | | | | Mg2790
ppm
.03004
.00382
12.703 | Mn2576
ppm
.00081
.00007
8.9164 | Mo2020
ppm
.00152
.00036
23.698 | Na3302
ppm
03730
.01532
41.060 | Ni2316
ppm
.00142
.00016
11.111 | .00089
.00047
53.429 | Se1960
00222
.00159
71.435 | | | ppm
.03004
.00382 | ppm
.00081
.00007 | ppm
.00152
.00036 | ppm
03730
.01532 | ppm
.00142
.00016 | .00089 | 00222 | | | ppm
.03004
.00382
12.703 | ppm
.00081
.00007
8.9164 | ppm
.00152
.00036
23.698 | ppm
03730
.01532
41.060 | ppm
.00142
.00016
11.111 | .00089
.00047
53.429 | 00222
.00159
71.435
00110 | | ESTATE OF STREET | ppm
.03004
.00382
12.703
.02734
.03274
LC Pass
.50000 | ppm
.00081
.00007
8.9164
.00076
.00086
LC Pass
.01000 | ppm
.00152
.00036
23.698
.00178
.00127
LC Pass
.01000 | ppm
03730
.01532
41.060
04813
02647
LC Pass
1.0000 | ppm
.00142
.00016
11.111
.00131
.00153
LC Pass | .00089
.00047
53.429
.00055
.00122
LC Pass | 00222
.00159
71.435
00110
00335
LC Pass
.01000 | | Tem
Lev
Lev
Lev
Lev
Lev
Lev
Lev
Lev | ppm
.03004
.00382
12.703
.02734
.03274
LC Pass
.50000
50000
Sb2068
ppm
.00451
.00031 | ppm
.00081
.00007
8.9164
.00076
.00086
LC Pass
.01000
01000
Sn1899
ppm
.00395
.00055 | ppm
.00152
.00036
23.698
.00178
.00127
LC Pass
.01000
01000
Sr4215
ppm
.00084
.00005 | ppm
03730
.01532
41.060
04813
02647
LC Pass
1.0000
-1.0000
Ti3349
ppm
.00130
.00005
4.1899
.00126
.00134 | ppm
.00142
.00016
11.111
.00131
.00153
LC Pass
.00500
00500
T11908
ppm
00027
.00060 | .00089
.00047
53.429
.00055
.00122
LC Pass
.00500
00500
V_2924
ppm
.00101
.00018 | 00222
.00159
71.435
00110
00335
LC Pass
.01000
01000
Zn2062
ppm
.00082
.00028 | | Tem
Lev
Lev
Lev
Lev
Lev
Lev
Lev
Lev | ppm
.03004
.00382
12.703
.02734
.03274
LC Pass
.50000
50000
Sb2068
ppm
.00451
.00031
6.9025 | ppm
.00081
.00007
8.9164
.00076
.00086
LC Pass
.01000
01000
Sn1899
ppm
.00395
.00055
13.980 | ppm
.00152
.00036
23.698
.00178
.00127
LC Pass
.01000
01000
Sr4215
ppm
.00084
.00005
6.2231 | ppm
03730
.01532
41.060
04813
02647
LC Pass
1.0000
-1.0000
Ti3349
ppm
.00130
.00005
4.1899 | ppm
.00142
.00016
11.111
.00131
.00153
LC Pass
.00500
00500
T11908
ppm
00027
.00060
219.28 | .00089
.00047
53.429
.00055
.00122
LC Pass
.00500
00500
V_2924
ppm
.00101
.00018
17.512 | 00222
.00159
71.435
00110
00335
LC Pass
.01000
01000
Zn2062
ppm
.00082
.00028
33.636 | | m alysis | Report | t Blank Sample | | 07/27/00 12:04:34 PM | | | page 2 | | |--|--|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------|---------------------------------------|--| | Units
Avge
SDev
%RSD | ppm
00035
.00043
122.22 | ppm
.00151
.00049
32.812 | ppm
00136
.00403
296.31 | ppm
00265
.00037
13.886 | ppm
.00075
.0003
3.8982 | | | | | #1
#2 | 00066
00005 | .00116
.00186 | .00149
00421 | 00239
00291 | .00073 | | | | | Errors
Hìgh
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | | intStd
Mode
Slem
Wavlen
Avge
BDev
KRSD | 1
Counts
Y
371.030
10034
64.04841
.6382917 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | #1 | 10080 | Who who | tody: book: | 1155" 1504" | these tree. | ***** | · · · · · · · · · · · · · · · · · · · | | 9989 Sample Name: 007551-2 Operator: GSP thod: 60102007 Sample Na Silime: 07/27/00 12:04:42 spent: Sp: CONC Corr. Factor: J Corr. Factor: 1 | | inc corr. | ractor: 1 | | | | | | |---------------|-----------------|---------------|------------------|------------------|------------------|---------|------------------| | lem | Ag3280 | A13082 | As1890 | 8_2496 | 8a4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00002 | .15516 | .00565 | .18784 | .85568 | .0006 | 30.037 | | SDev | 2037.4 | .00208 | .00182 | .00116 | .00764 | .00005 | . 250 | | %RSD | | 1.3432 | 32.128 | .61896 | .89298 | 90.822 | . 83200 | | #1
#2 | 00026
.00029 | .15369 | .00437
.00694 | .18702
.18867 | .85028
.86108 | .00010 | 29.860
30.214 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00007 | .00054 | .00399 | .00242 | L.17694 | .16947 | 4.3641 | | SDe∨ | .00001 | .00013 | .00034 | .00014 | .00147 | .00238 | .0541 | | %RSD | 19.002 | 24.516 | 8.3912 | 5.5679 | .82829 | 1.4026 | 1.2404 | | #1 | .00006 | .00045 | .00375 | .00252 | L.17591 | .16779 | 4.3258 | | #2 | .00007 | .00064 | .00422 | .00232 | L.17798 | .17116 | 4.4023 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units | Mg2790
ppm | Mn2576
ppm | Mo2020
ppm | Na3302
ppm | Ni2316
ppm | Pb2203 | Se1960 | | ∛A∨ge | 16.637 | .01245 | 00032 | 54.111 | .00612 | .00065 | .00446 | | >SDev | .124 | .00001 | .00004 | .529 | .00002 | .00058 | .00151 | | %RSD | .74516 | .11154 | 12.114 | .97775 | .26400 | 89.192 | 33.887 | | #1 | 16.549 | .01244 | 00034 | 53.737 | .00613 | .00024 | .00553 | | #2 | 16.724 | .01246 | 00029 | 54.485 | .00611 | .00106 | .00339 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 |
00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 00264 | .01425 | .13864 | .00648 | 00929 | .00566 | .27268 | | SDev | .00044 | .00019 | .00113 | .00007 | .00028 | .00014 | .00200 | | %RSD | 16.819 | 1.3244 | .81512 | 1.0844 | 2.9839 | 2.4362 | .73500 | | #1 | 00232 | .01412 | .13784 | . 00653 | 00909 | .00556 | . 27126 | | #2 | 00295 | .01438 | | . 00643 | 00949 | .00576 | . 27409 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Eow | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | ⊋Len
groe | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | bbw | ppm | ppm | ppm | ppm | | | |-------------|------------|------------|------------|--|---------|-----------------|------------| | | 00151 | .00173 | .00712 | .00314 | .00125 | | | | 11 Y | .00143 | .00159 | .00540 | .00043 | .00007 | | | | | 95.001 | 91.722 | 75.883 | 13.669 | 5.8170 | | | | | 00050 | .00061 | .01094 | . 00284 | .00130 | | | | 2 | 00252 | .00285 | .00330 | .00344 | .00120 | | | | Frors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | Bigh | | | | HOOHLOK | HOOHEOK | | | | S OM | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Flem | Υ | *** | Secur Same | ************************************** | 100 Mp | | ··· | | Wavlen | 371.030 | | tooks com | **** | *** *** | | arth days. | | Avge | 10319 | | *** | **** | **** | against despite | **** | | SDev | 29.80759 | **** | **** | top way | ***** | ww ww | · · | | ARSD. | .2888699 | titler som | new rese | une une | ***** | **** | ****** | | #1 | 10340 | and after | *** | *** | **** | **** | ware water | | #2 | 10298 | war war | **** | **** | **** | Marri secu | ww sw- | **60102007** Sample Name: 007551-3 **07/27/00** 12:09:46 ONC Corr. Factor: 1 | | | | | | | | , | |---------------------------------------|--|---|--|--|---|-------------------------------------|--------------------------------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | PPM | | .00007 | .18462 | .00541 | .17664 | 1.3288 | .00007 | 60.249 | | | .00029 | .01922 | .00054 | .00776 | .0490 | .00012 | 2.301 | | | 439.03 | 10.413 | 9.9549 | 4.3915 | 3.6856 | 172.49 | 3.8194 | | | .00027 | .19821 | .00579 | .18213 | 1.3634 | .00016 | 61.876 | | | 00014 | .17102 | .00503 | .17116 | 1.2941 | 00002 | 58.622 | | TOPS | LC Pass | | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | em | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | dits | ppm | lyge | .00006 | .00103 | .00240 | .00246 | L.32486 | .31913 | 5.3827 | | pev | .00019 | .00003 | .00013 | .00031 | .01628 | .01405 | .1451 | | RSD | 319.44 | 3.2442 | 5.5497 | 12.776 | 5.0099 | 4.4010 | 2.6948 | | 12 | .00019
00007 | .00101 | .00249
.00230 | .00268
.00224 | L.33637
L.31336 | .32906
.30920 | 5.48 5 2
5.2801 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
ugits
avge
spev
spev | Mg2790
ppm
43.425
1.707
3.9307 | Mn2576
ppm
.02744
.00114
4.1536 | Mo2020
ppm
00074
.00059
79.206 | Na3302
ppm
35.538
1.256
3.5346 | N12316
ppm
.00611
.00092
15.082 | Pb2203
00058
.00218
374.24 | Se1960
.00867
.00062
7.1204 | | #1 | 44.632 | .02825 | 00033 | 36.426 | .00546 | .00096 | .00910 | | #2 | 42.218 | .02663 | 00115 | 34.650 | .00676 | 00212 | .00823 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 00771 | .01875 | .20655 | .00701 | L01453 | .00248 | .42064 | | SDev | .00227 | .00219 | .00775 | .00049 | .00089 | .00002 | .01586 | | %RSD | 29.415 | 11.671 | 3.7535 | 6.9231 | 6.1158 | .91612 | 3.7707 | | #1 | 00610 | .02030 | .21203 | .00736 | L01390 | .00247 | . 43185 | | #2 | 00931 | .01720 | .20106 | .00667 | L01516 | .00250 | . 40942 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | U nits | ppm | ppm | ppm | mag | mag | | | |---------------|--|-----------|-----------|------------|-----------|----------|------------| | | .00151 | 00162 | .01080 | .00760 | .00103 | | | | E V | .00235 | .00209 | .00211 | .00013 | .00010 | | | | # D # | 156.27 | 128.64 | 19.495 | 1.6620 | 9.9327 | | | | | | | | | | | | | | .00317 | 00015 | .01229 | .00751 | .00111 | | | | 2 | □ - .00016 | 00310 | .00931 | .00769 | .00096 | | | | | | | | | | | | | rrors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | **.
*• | | | | | | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | L | | | 44.5 | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Y | | | | 11010000 | 11010000 | NOTOSED: | | | 371.030 | | - | 1964 Miles | www. | **** | 90mm 9005* | | | 9907 | ··· | | *** | 1307 5000 | *** | **** | | | 377.5950 | - | New 1000* | *** | **** | | | | | 3.811518 | ···· | **** | 1000-1000- | *** | ···· | | | | | | | | | | | | | 9640 | *** | **** | | *** | | | | | 10174 | **** **** | **** | | | | | | | Branch and the second | | | | | | | ethod: 60102007 Sample Name: 007551-4 un Time: 07/27/00 12:14:49 omment: ode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
&RSD | Ag3280
ppm
00024
.00031
129.10 | A13082
ppm
.16357
.00737
4.5051 | As1890
ppm
.00459
.00326
70.980 | B_2496
ppm
.19816
.00442
2.2298 | Ba4934
ppm
1.1343
.0289
2.5478 | Be3130
ppm
00009
.00003
35.066 | Ca3179
ppm
50.964
1.133
2.2229 | |---------------------------------------|--|---|---|---|--|---|---| | #1
#2 | 00002
00046 | .15836 | .00690 | .19504 | 1.1139 | 00011
0006 | 50.163
51.765 | | MErrors
High
Low | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | Elem
Units
Avge
SDev | Cd2265
ppm
.00011
.00007 | Co2286
ppm
.00057
.00050 | Cr2677
ppm
.00262
.00012 | Cu3247
ppm
.00342
.00010 | Fe2714
ppm
L.29381
.00476 | Fe2599
ppm
.29197
.01103 | K_7664
ppm
5.6585
.1477 | | RSD | 60.967 | 87.729 | 4.4387 | 2.9317 | 1.6213 | 3.7795 | 2.6104 | | | .00016 | .00093 | .00270
.00254 | . 00335
. 00349 | L.29044
L.29718 | .28417
.29978 | 5.5540
5.7629 | | Pagns
Pagn
Sow | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | | Mg2790
ppm
30.627 | Mn2576
ppm
.01189 | Mo2020
ppm
00013 | Na3302
ppm
28.295 |
Ni2316
ppm
.00769 | Pb2203 | Se1960 | | | .721
2.3549 | .00016 | .00013 | .615
2.1742 | .00052
6.8158 | .00013 | .00103 | | | 30.117
31.137 | .01177 | 00011
00015 | 27.860
28.730 | .00732
.00806 | 00045
.00020 | .00095 | | icons
inter- | LC Pass
500.00
50000 | LC Pass
25.000
01000 | LC Pass
50.000
01000 | LC Pass
100.00
-1.0000 | LC Pass
100.00
00500 | LC Pass
150.00
00500 | LC Pass
50.000
01000 | | - CD | Sb2068
ppm
00496
.00101
20.407 | Sn1899
ppm
.01225
.00138
11.252 | Sr4215
ppm
.14790
.00358
2.4186 | Ti3349
ppm
.00834
.00006
.73252 | T11908
ppm
00849
.00055
6.4405 | V_2924
ppm
.00351
.00047
13.403 | Zn2062
ppm
.31256
.00710
2.2709 | | il
12: | 00567
00424 | .01323
.01128 | .14537
.15043 | .00830
.00839 | 00888
00811 | .00318
.00384 | .30754
.31758 | | Errors
High
Low | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Units
Avge
SDev
%RSD | ppm
00038
.00126
329.99 | ppm
.00000
.0006
3187.8 | ppm
.00180
.00050
27.690 | ppm
.00067
.00006
8.4332 | ppm
.00176
.00002
1.0937 | | | |-------------------------------|----------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---|-----------| | #1
#2 | 00127
.00051 | 00004
.00005 | .00145
.00215 | .00071
.00063 | .00175
.00177 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | E1em | Υ | 1400 1000 | *** | | **** | | | | Wavlen | 371.030 | *** | *** | | 1000 5000 · | **** | seer soot | | Avge | 10359 | | WAY 1994 | | *** *** | *** | **** | | Ettév : | 143.5675 | Made states | term team | *** | | ··· | | | (C) | 1.385978 | Speak where | asser balan | 6000 6000· | solon costs. | *************************************** | **** | | 1 | 10460 | 7000 Table | rein Alin | **** **** | bear some | w w | *** | | 2 | 10257 | · · · · · · · · · · · · · · · · · · · | **** | **** **** | *** | *** | war war | ethod: 60102007 Sample Name: PBWPW247 :Un Time: 07/27/00 12:19:53 Sament: Sca: CONC Corr. Factor: 1 Operator: GSP | ###################################### | | | | | | | | |--|---|---|--|---|--|--|--| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00004 | .00673 | .00260 | .00142 | .00085 | .00001 | .04496 | | SDev | .00021 | .00201 | .00140 | .00011 | .00009 | .00002 | .00447 | | *RSD | 490.10 | 29.864 | 53.841 | 7.4014 | 10.408 | 364.28 | 9.9515 | | #1 | 00010 | .00531 | .00359 | .00134 | .00091 | 00001 | .04812 | | #2 | .00019 | .00815 | .00161 | | .00079 | .00002 | .04180 | | Errors | LC Pass | High | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00005 | 00051 | .00001 | 00023 | .00901 | .00060 | .00479 | | SDev | .00003 | .00014 | .00005 | .00025 | .00540 | .00048 | .00950 | | %RSD | 58.643 | 27.077 | 479.25 | 107.36 | 59.937 | 78.657 | 198.21 | | #1 | .00008 | 00061 | 00003 | 00006 | .00519 | .00094 | .01151 | | #2 | .00003 | 00042 | .00005 | 00041 | .01283 | .00027 | 00192 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | LC Pass | LC Pass | | High | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Low | ~.00500 | 01000 | 00500 | 01000 | | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.02439
.00061
2.5070 | Mn2576
ppm
.00005
.00000 | Mo2020
ppm
00035
.00025
71.969 | Na3302
ppm
.06943
.09374
135.01 | Ni2316
ppm
00156
.00022
13.901 | Pb2203
.00055
.00037
68.196 | Se1960
00256
.00002
.73698 | | | | | | | | | | | #1 | .02396 | .00005 | 00053 | .13572 | 00171 | .00028 | 00258 | | #2 | .02482 | | 00017 | .00315 | 00140 | .00081 | 00255 | | | | .00005 | | | | | | | #2
Errors
High | .02482
LC Pass
.50000 | .00005
.00005
LC Pass
.01000 | 00017
LC Pass | .00315
LC Pass
1.0000 | 00140
LC Pass
.00500 | .00081
LC Pass
.00500 | 00255
LC Pass | | #2 Errors High Low Elem Units Avge SDev | .02482
LC Pass
.50000
50000
Sb2068
ppm
.00428
.00089 | .00005
.00005
LC Pass
.01000
01000
Sn1899
ppm
.00206
.00174 | 00017
LC Pass
.01000
01000
Sr4215
ppm
.00013
.00002 | .00315
LC Pass
1.0000
-1.0000
T13349
ppm
.00003
.00003 | 00140
LC Pass
.00500
00500
T11908
ppm
00594
.00125 | .00081
LC Pass
.00500
00500
V_2924
ppm
00004
.00007 | 00255
LC Pass
.01000
01000
Zn2062
ppm
.00037
.00004 | | #2 Errors High Low Elem Units Avge SDev %RSD | .02482
LC Pass
.50000
50000
Sb2068
ppm
.00428
.00089
20.833 | .00005
.00005
LC Pass
.01000
01000
Sn1899
ppm
.00206
.00174
84.481 | 00017
LC Pass
.01000
01000
Sr4215
ppm
.00013
.00002
16.288 | .00315
LC Pass
1.0000
-1.0000
T13349
ppm
.00003
.00003
122.69 | 00140
LC Pass
.00500
00500
T11908
ppm
00594
.00125
20.998
00505 | .00081
LC Pass
.00500
00500
V_2924
ppm
00004
.00007
174.70 | 00255
LC Pass
.01000
01000
Zn2062
ppm
.00037
.00004
12.085 | | Report | 07/27/00 12:24:47 PM | page | |--------|----------------------|------| | | | | | | \$ | 7 | | | | | | |---------|-------------|-------------|-----------|-------------|---------|---------|--| | | ppm | ppm | ppm | mag | ppm | | | | | .00155 | .00005 | 01061 | .00146 | .00002 | | | | | .00037 | .00038 | .00247 | .00126 | .00002 | | | | Table 1 | 24.029 | 759.38 | 23.312 | 86.702 | 79.359 | | | | | | | | | | | | | | .00129 | 00022 | 00886 | .00056 | .00004 | | | | | .00181 | .00031 | 01236 | .00235 | .00001 | | 4 | | rrors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass | | | | Loh | , IIOOIIEOI | HOOHEOK | HOOHLOK | HOCHECK | .05000 | | | | | | | | | - 05000 | | ************************************** | | | | | | | .03000 | • | | | ntStd | · 1 | 2 | 3 | 4 | 5 | 6 | 7 | | loge | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | len . | Y | ***** ***** | *** | *** **** | *** | *** | www sape | | Byten- | 371.030 | | ***** | *** | **** | ···· | may van | | yge : | 9694 | | **** | - | www. | *** | **** | | Dev | 27.92105 | | *** | mr | **** | **** | Prior. John. | | irsd. | .2880148 | | **** **** | *** | *** | ···· | war war | | | | | | | | | | | | 9714 | | | | **** | www saw | **** | | 2 | 9675 | hele see. | *** *** | we we | the me | | *** | s Report 2 60102007 Sample Name: LCSWPW247 Operator: GSP **07/27/00** 12:24:56 CONC Corr. Factor: 1 | | NC Corr. | Factor: 1 | | | | | |
---|---|--|--|--|--|---|--| | RSD - | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .51513 | 9.8253 | .98729 | .96529 | 1.0136 | .50145 | 10.087 | | | .00414 | .0763 | .00723 | .01470 | .0078 | .00493 | .107 | | | .80430 | .77626 | .73275 | 1.5232 | .77015 | .98297 | 1.0568 | | | .51220
.51 80 6 | 9.7713
9.8792 | .98217
.99240 | .95490
.97569 | 1.0081 | .49797
.50494 | 10.011
10.162 | | | LC Pass | | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | LEMP
JOB CE
V. CE | Cd2265
ppm
.50497
.00453
.89763 | Co2286
ppm
1.0063
.0112
1.1121 | Cr2677
ppm
1.0150
.0116
1.1472 | Cu3247
ppm
1.0161
.0071
.69635 | Fe2714
ppm
L10.122
_110
1.0824 | Fe2599
ppm
10.177
.093
.91863 | K_7664
ppm
9.5873
.0200
.20859 | | 1 | .50177 | .99837 | 1.0068 | | L10.045 | 10.111 | 9.5732 | | 2 | .50818 | 1.0142 | 1.0233 | | L10.200 | 10.243 | 9.6014 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | Bigh | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Laute
Svoje
SDev
RSD | Mg2790
ppm
9.9680
.0902
.90516 | Mn2576
ppm
1.0104
.0101
.99774 | Mo2020
ppm
1.0540
.0115
1.0927 | Na3302
ppm
9.6098
.0923
.95999 | Ni2316
ppm
1.0085
.0084
.83664 | Pb2203
1.0045
.0081
.80390 | Se1960
.91615
.00611
.66715 | | #1 | 9.9042 | 1.0033 | 1.0459 | 9.5445 | 1.0025 | .99881 | .91183 | | #2 | 10.032 | 1.0176 | 1.0622 | 9.6750 | 1.0144 | 1.0102 | .92047 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 1.0163 | 1.0571 | 1.0229 | 1.0482 | .99441 | 1.0109 | 1.0099 | | SDev | .0122 | .0072 | .0070 | .0100 | .00486 | .0108 | .0120 | | %RSD | 1.1995 | .68064 | .68345 | .95304 | .48884 | 1.0663 | 1.1900 | | #1 | 1.0077 | 1.0520 | 1.0179 | 1.0412 | .99097 | 1.0032 | 1.0014 | | #2 | 1.0249 | 1.0622 | 1.0278 | 1.0553 | .99784 | 1.0185 | 1.0184 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | ** ** | | | | | | | | |-------------------------------|---|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------|--------------| | Units
Avge
SDev
SRSD | ppm
1.0068
.0067
.66724 | ppm
1.0034
.0088
.87236 | ppm
.90830
.00409
.45037 | ppm
.92007
.00712
.77400 | ppm
.98666
.00282
.28595 | | | | #1
#2 | 1.0020
1.0115 | .99721 [:]
1.0096 | .90541
.91120 | .91504
.92511 | . 98467
. 98866 | | | | Errors
High
DW | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | idStd | 1
Counts
Y
371.030
9754
81.78270 | 2
NOTUSED | 3
NOTUSED

 | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | .8384638
9812
9696 | | 1000- 1000-
1000- 1000- | 100° 100° | 100° 100° | | water Water | sethod: 60102007 Sample Name: 007540-1 Run Time: 07/27/00 12:29:59 comment: mode: CONC Corr. Factor: 1 Operator: GSP | | | . / 40001 | , | | | | | |---------------------------------------|---|---|---|---|--|---|---| | Elem
Units
Avge
SDev
%RSD | Ag3280
ppm
00010
.00018
170.19 | A13082
ppm
.15165
.00051
.33603 | As1890
ppm
.00439
.00057
12.949 | B_2496
ppm
.02181
.00082
3.7826 | Ba4934
ppm
.01946
.00005
.24056 | Be3130
ppm
.00014
.00001
7.5771 | Ca3179
ppm
31. 493
.009 | | #1
#2 | .00002
00023 | .15201
.15129 | .00399
.00479 | .02123
.02239 | .01942
.01949 | .00015 | 31.486
31.500 | | Errors
High
Low | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.00037
.00010
27.818 | Co2286
ppm
00028
.00009
31.232 | Cr2677
ppm
.00108
.00029
27.153 | Cu3247
ppm
.00738
.00008
1.1062 | Fe2714
ppm
L.02518
.00110
4.3506 | Fe2599
ppm
.01650
.00021
1.2807 | K_7664
ppm
1.3360
.0013
.10090 | | #1
#2 | .00030 | 00034
00021 | .00129
.00088 | .00732
.00744 | L.02595
L.02440 | .01665
.01635 | 1.3370
1.3351 | | Errors
Eigh
OW | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | en
Vis
Vis
Visvi | Mg2790
ppm
8.1502
.0113
.13905 | Mn2576
ppm
.00078
.00000
.21833 | Mo2020
ppm
.00158
.00039
24.484 | Na3302
ppm
8.2642
.0778
.94098 | N12316
ppm
.00055
.00066
120.56 | Pb2203
.00415
.00082
19.753 | Se196000297 .00148 49.96200402 | | 2
Prors | 8.1582
LC Pass | .00078
LC Pass | .00130
LC Pass | 8.2092
LC Pass | .00101
LC Pass | .00473
LC Pass | 00192
LC Pass | | | 500.00
50000 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | is
Ce
Sp | Sb2068
ppm
.00637
.00059
9.2409 | Sn1899
ppm
.00179
.00054
30.179 | Sr4215
ppm
.14857
.00023
.15199 | Ti3349
ppm
.00028
.00007
26.066 | T11908
ppm
00327
.00117
35.912 | V_2924
ppm
.00074
.00039
52.277 | Zn2062
ppm
.01800
.00025
1.3910 | | | .00679 | .00141
.00218 | .14841
.14873 | .00033
.00023 | 00244
00410 | .00102
.00047 | .01783 | | arrors
Ish | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20:000
00500 | LC
Pass
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | - Nem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Units | ppm | ppm | ppm | ppm | ppm | | | |--------------|----------|---------|-------------|------------|-------------|--|------------| | evge | .00925 | .00160 | 01299 | .00204 | .00205 | | | | SDev. | .00194 | .00220 | .00105 | .00170 | .00003 | | | | RSD | 20.943 | 136.85 | 8.0621 | 83.570 | 1.3826 | • | | | | | | | | | | | | #1 | .01062 | .00005 | 01373 | .00083 | .00207 | | | | #2 | .00788 | .00316 | 01225 | .00324 | .00203 | | | | | | | | | | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | High | | | | | | | | | LOW | | | | | | | | | IntStd | 1 | 2 | 3 | d | *** | , | | | | . | | - | 4 | 5 | 6 | / | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | **** | we we | **** **** | 1997 1997 | *** | 1000 0000 | | Wavlen | 371.030 | *** | 1907 1000 | **** | where wager | **** | 9804 3664° | | Avge | 9656 | **** | 1900 9000 | **** | **** | ··· ·· | *** | | SDev | 14.47912 | | ···· | W. W. | | ······································ | | | SDe∨
%RSD | .1499547 | u | ww mu- | **** | *** | un un | tope took | | | | | | | | | | | #1 | 9645 | *** | 2200° 5000° | ton and | war 4511 | 4000 **** | | | #2 | 9666 | *** | | **** ***** | mr um | **** | | _______ od: 60102007 Sample Name: 007540-1L le: 07/27/00 12:35:02 ent: CONC Corr. Factor: 1 Operator: GSP | | | | , | | | | | |---------------------------------------|---|---|---|---|---|---|---------------------------------------| | Tem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | units | ppm | vas | 00018 | .03307 | .00107 | .00420 | .00389 | .00006 | 6.5357 | | Spev | .00006 | .00371 | .00080 | .00060 | .00005 | .00002 | .0661 | | kRSD | 32.116 | 11.208 | 75.049 | 14.250 | 1.2877 | 27.985 | 1.0115 | | #1 | 00023 | .03569 | .00050 | .00378 | .00393 | .00008 | 6.5824 | | #2 | 00014 | .03045 | .00163 | .00463 | | .00005 | 6.4889 | | Errors | LC Pass | digh | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00013 | 00037 | .00086 | .00146 | L.01236 | .00407 | .27687 | | SDev | .00007 | .00026 | .00011 | .0006 | .00096 | .00021 | .00602 | | %RSD | 53.417 | 68.655 | 12.647 | 3.8850 | 7.7909 | 5.1107 | 2.1751 | | #1
#2 | .00018 | 00056
00019 | .00094
.00078 | .00142
.00150 | L.01304
L.01168 | .00422
.00392 | .28113 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
1.6708
.0162
.97025 | Mn2576
ppm
.00020
.00003
12.801 | Mo2020
ppm
.00012
.00015
126.25 | Na3302
ppm
1.6839
.1185
7.0346 | Ní2316
ppm
.00045
.00068
151.15 | Pb2203
.00217
.00005
2.3103 | Se1960
00124
.00134
107.94 | | #1 | 1.6823 | .00022 | .00001 | 1.7677 | .00093 | .00213 | 00029 | | #2 | 1.6594 | .00018 | .00022 | 1.6002 | 00003 | | 00219 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem
Units
Avge
SDev
%RSD | Sb2068
ppm
.00134
.00020
15.154 | 5n1899
ppm
.00154
.00068
43.934 | Sr4215
ppm
.02993
.00029
.98052 | T13349
ppm
.00007
.00018
256.51 | T11908
ppm
00171
.00044
25.982 | V_2924
ppm
.00005
.00006
130.43 | Zn2062
ppm
.00434
.00005 | | #1
#2 | .00120
.00149 | .00202
.00106 | .03013 | .00020
00006 | 00202
00139 | .00010 | .00431
.00438 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | · · · · · · · · · · · · · · · · · · · | | e da | M | | | | | | | |-------|----------------------|-------------|------------|-----------|---------------|---------------------------------------|-------------| | | ppm | ppm | ppm | ppm | ppm | | | | | : 002 9 9 | .00176 | 00306 | 00034 | .00040 | | | | | .00057 | .00021 | .00032 | .00185 | .00002 | | | | | 18.930 | 11.824 | 10.464 | 550.26 | 4.0804 | | | | | | | | | | | | | | .00259 | .00190 | 00283 | .00097 | .00041 | | | | | .00339 | .00161 | 00329 | 00165 | .00039 | | • | | | | | | | | | | | DIS | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | D.Y. | _ | | | | _ | 16 <u>-</u> | | | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | , Y | | *** | **** | **** | *** | | | | 371.0 30 | *** | **** | same take | | tales were | 1000 WW | | | 9927 | | 750F 110F | No. 1000 | out to | Augu 2000 | | | | - 88.43 254 | ute we | www war | was many | VARDY \$4000* | | wa wr | | Dr. | . . 89085 90 | Man tear | time test- | **** | 100° ULLY | · | · · · | | | | | | | | | | | | 9864 | | **** | | **** | | *** | | W 160 | 9989 | www www | **** | w w | *** | · · · · · · · · · · · · · · · · · · · | | 60102007 Sample Name: 007540-1S 07/27/00 12:40:05 Corr. Factor: 1 | Spin
To | Ag3280
ppm | A13082
ppm | As1890
ppm | B_2496
ppm | Ba4934
ppm
1.0439 | Be3130
ppm
.50918 | Ca3179
ppm
41.834 | |---------------|------------------|-----------------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------| | Myde. | .52130 | 10.145
.173 | 1.0064 | 1.0 028
.0127 | .0169 | .00843 | .714 | | SDEV | .00766
1.4698 | 1.7081 | 1.3341 | 1.2688 | 1.6168 | 1.6558 | 1.7074 | | | | | | | | | 41.329 | | | .51588 | 10.023 | .99695 | .99385 | 1.0320 | .50322
.51514 | 42.339 | | | .52672 | 10.268 | 1.0159 | 1.0118 | 1.0559 | .31314 | 42.339 | | Entors | LC Pass | aigh : | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | | | | | | | | | atem: | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Enfes | ppm | ppm | ppm | bbw | ppm | bbw | ppm | | SV4P: | .50499 | 1.0172 | 1.0267 | 1.0372 | L10.240 | 10.307 | 11.454
.150 | | | .00824 | .0170 | .0170 | .0160 | .174 | .183
1.7767 | 1.3098 | | RSD. | 1.6319 | 1.6711 | 1.6606 | 1.5 39 0 | 1.6969 | 1.//6/ | 1.3070 | | 4.1 | .49917 | 1.0052 | 1.0146 | 1.0259 | L10.117 | 10.178 | 11.348 | | 2 | .51082 | 1.0292 | 1.0387 | 1.0485 | L10.363 | 10.437 | 11.560 | | | .01002 | | | | | | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC LOW | LC Pass | LC Pass | | Bight. | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | M-2700 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | 2 2. 5 | Mg2790
ppm | maga | ppm | ppm | ppm | 102200 | | | | 18.412 | 1.0254 | 1.0675 | 18.449 | 1.0169 | 1.0183 | .92744 | | | .316 | .0175 | .0221 | .314 | .0154 | .0098 | .00436 | | 168 6. | 1.7170 | 1.7107 | 2.0668 | 1.7029 | 1.5110 | .96726 | .47048 | | | Fig. 1 | | | | | | 00474 | | #1 | 18.189 | 1.0130 | 1.0519 | 18.227 | 1.0061 | 1.0113 | .92436
.93053 | | 2 | 18.636 | 1.0378 | 1.0831 | 18.671 | 1.0278 | 1.0252 | . 93033 | | Errors | LC Pass | High | 500.00 | 25:000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | | | | | | | | 7007.0 | | ₹ Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | |) Units | ppm | mad | ppm | ppm | ppm
1 0078 | ppm
1 0259 | ppm
1.0306 | | Avge | 1.0306 | 1.0674 | 1.1825 | 1.0600 | 1.0078
.0109 | 1.0258
.0175 | .0169 | | SDev | .0206
1.9979 | .0162
1.5163 | .0217
1.8332 | .0184
1.7383 | 1.0843 | 1.7085 | 1.6447 | | % %RSD | 1.77/7 | 1.5165 | I.OUUZ | 1.7000 | | | | | #1 | 1.0161 | 1.0560 | 1.1672 | 1.0470 | 1.0001 | 1.0134 | 1.0186 | | #2 | 1.0452 | 1.0789 | 1.1979 | 1.0730 | 1.0155 | 1.0382 | 1.0425 | | | | | | | 100 | LC Dees | LC Dage | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass
100.00 | LC Pass
50.000 | | High | 50.000 | 20,000 | 10.000 | 20.000 | 20.000
01000 | 01000 | 02000 | | Low | 05000 | 01000 | 00500 | 00500 | .01000 | .01000 | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | 3 | | | . , | , | Units | ppm | ppm | ppm | ppm | ppm | | | |----------------|----------|--------------------|---------------|-----------|--------------|-------------|-------------| | Avge | 1.0226 | 1.0161 | .91854 | . 93189 | 1.0334 | | | | SDev | .0119 | .0088 | .00162 | .00573 | .0234 | | | | *RSD | 1.1681 | . 86637 | .17617 | .61532 | 2.2656 | | | | #1 | 1.0141 | 1.0099 | .91740 | . 92783 | 1.0168 | | | | ⊭ 2 | 1.0310 | 1.0223 | .91969 | . 93594 | 1.0499 | | | | Errors
High | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | 4 | | | TOM. | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | ode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Le m | Υ | **** | super Salar | we war | we we | a | 1000° 2000° | | aylen | 371.030 | 100° 110° | www water | WAY 1889 | | *** | today daya. | | Mage . | 9540 | | squy squar | **** | *** |
···· | **** | | Bis. | 102.8647 | *** | 11 Ser Seeder | *** | **** | ···· | Style book: | | FSP . | 1.078224 | ···· | 200r 400. | **** | Saver leader | war wur | | | | 9613 | and den | 114-144 | **** **** | agent little | 6000° 4000° | Mar 1497 | | | 9467 | | wr | *** | ···· | *** **** | | | nalysis | • | | | | 7/00 12:50: | US MIT | page | |-------------------|------------------------|-----------------------|-------------|-------------|-------------|------------|---------| | | 60102007
: 07/27/00 | Sample Na
12:45:08 | ame: 00754 | 0-1SD | Оро | arator: GS | P | | lode: CO | NC Corr. | Factor: . | L | | | | | | Elem | Ag3280 | A13082 | As1890 | 8_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | ppm | ppm | ppm | ppm | ppm | mag | | Avge | . 52329 | 10.140 | 1.0121 | 1.0077 | 1.0410 | .51386 | 42.721 | | SDev | .00339 | .073 | .0095 | . 0064 | . 0067 | .00325 | . 284 | | %RSD | .64719 | .71729 | .94195 | .63515 | .63964 | .63231 | . 66379 | | #1 | .52089 | 10.088 | 1.0054 | 1.0032 | 1.0363 | .51157 | 42.521 | | #2 | . 52568 | 10.191 | 1.0189 | 1.0122 | 1.0457 | .51616 | 42.922 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10,000 | 500.00 | | LOW | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | mag | ppm | mag | maga | ppm | mag | | Avge | .51025 | 1.0230 | 1.0330 | 1.0323 | L10.289 | 10.366 | 11.421 | | SDev | .00252 | .0063 | .0080 | .0047 | .063 | .066 | .065 | | %RSD | .49341 | .61735 | . 77430 | . 45657 | .61297 | .63862 | .57016 | | #1 | .50847 | 1.0185 | 1.0273 | 1.0289 | L10.245 | 10.319 | 11.375 | | #2 _, , | .51203 | 1.0274 | 1.0386 | 1.0356 | L10.334 | 10.413 | 11.467 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | Uni ts | ppm | ppm | ppm | mag | ppm | | | | Avge | 18.675 | 1.0305 | 1.0766 | 18.763 | 1.0229 | 1.0265 | . 93753 | | SDev | .116 | .0068 | .0085 | . 175 | .0075 | .0060 | .00605 | | RSD | .62128 | .66418 | . 78594 | .93518 | . 73111 | .57987 | .64556 | | #1 | 18.593 | 1.0256 | 1.0706 | 18.639 | 1.0176 | 1.0223 | . 93325 | | #2 | 18.757 | 1.0353 | 1.0826 | 18.887 | 1.0282 | 1.0307 | .94181 | | Enrors | LC Pass | l ígh | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | OW | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Z lem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Enits | ppm | ppm | mag | mag | ppm | ppm | ppm | | Awge | 1.0391 | 1.0738 | 1.1822 | 1.0643 | 1.0085 | 1.0299 | 1.0455 | | SDev . | -0062 | .0045 | .0083 | .0066 | .0025 | .0062 | .0075 | | LESED. | . 59869 | .41843 | .70517 | .61608 | . 24533 | .59783 | .71622 | | B 1 | 1.0347 | 1.0706 | 1.1763 | 1.0596 | 1.0067 | 1.0256 | 1.0402 | | #2 | 1.0435 | 1.0770 | 1.1881 | 1.0689 | 1.0102 | | 1.0508 | | Errors | LC Pass | ligh | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | low : | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Eilem . | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | | | x / U U / x | 1 / W W / L | mr0/0/ | | | | Units . | ppm | ppm | ppm | ppm | ppm | | | |-----------------------|----------|---------|-------------|------------|-------------|------------|-----------| | Evge | 1.0279 | 1.0258 | .93283 | . 93988 | 1.0351 | | | | SDev | .0082 | .0048 | .00503 | . 00656 | .0055 | | | | RSD | .79493 | .47228 | . 53967 | . 69802 | .52920 | | | | | 1.0221 | 1.0223 | . 92927 | . 93524 | 1.0312 | | | | 2 | 1.0337 | 1.0292 | . 93639 | .94451 | 1.0389 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Y | | | | | | | | Wavlen | 371.030 | *** | asian some | WAY WAY | SERVI SALVI | **** | * | | Avge | 9632 | ur | **** **** | ww. ww | ur u | ···· | w | | SDev | 27.30786 | | Miner books | addy sadds | ster on | Vados 440m | Mary Mary | | **RSD | .2835202 | ww ww | alter seen | \100 to | total tree. | 1500 1500 | **** | | #1 | 9651 | | | | | | | | #2 | 9612 | **** | ***** | **** | ***** | solar sour | | | | | | | | | | | Sample Name: 007534-1 **60102007** Sample Na **607/27/00** 12:50:11 Corr. Factor: 1 | | X / | | - | | | | | |---------------------------------------|---|---|---|---|---|---|-------------------------------------| | n
V
R | Ag3280
ppm
.00008
.00015
177.01 | A13082
ppm
.92204
.01171
1.2705 | As1890
ppm
.00179
.00125
70.129 | B_2496
ppm
.02388
.00034
1.4244 | Ba4934
ppm
.10873
.00007
.06881 | Be3130
ppm
.00021
.00001
5.8240 | Ca3179
ppm
6.6639
.0189 | | 1 | 00002 | .91376 | . 00267 | .02412 | .10868 | .00022 | 6.6505 | | 12 | .00019 | .93032 | . 00090 | .02364 | .10879 | | 6.6773 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem
Units
Avge
SDev
SRSD | Cd2265
ppm
.00031
.00022
71.702 | Co2286
ppm
.00060
.00020
33.155 | Cr2677
ppm
.01683
.00002
.11735 | Cu3247
ppm
.00356
.00012
3.2426 | Fe2714
ppm
L1.7211
.0069
.40383 | Fe2599
ppm
1.7412
.0045
.25614 | K_7664
ppm
H57.765
.012 | | #1 | .00015 | .00074 | .01682 | .00348 | L1.7162 | 1.7380 | H57.756 | | #2 | .00046 | .00046 | .01685 | .00364 | L1.7260 | 1.7443 | H57.774 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Hìgh | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
1.9975
.0017
.08398 | Mn2576
ppm
.43169
.00059
.13591 | Mo2020
ppm
.00352
.00097
27.656 | Na3302
ppm
50.678
.157
.30971 | Ni2316
ppm
.00327
.00045
13.709 | Pb2203
.00303
.00119
39.451 | Se1960
00001
.00289
23602. | | #1 | 1.9963 | .43128 | .00420 | 50.567 | . 00295 | .00218 | 00205 | | #2 | 1.9987 | .43211 | .00283 | 50.789 | . 00358 | .00387 | .00203 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00581 | .00290 | .56614 | .03095 | 00626 | .00278 | .02418 | | SDev | .00115 | .00086 | .00011 | .00027 | .00149 | .00031 | .00009 | | %RSD | 19.731 | 29.657 | .01978 | .87778 | 23.825 | 11.266 | .37265 | | #1 | .00500 | .00229 | .56606 | .03076 | 00731 | .00256 | .02412 | | #2 | .00662 | .00350 | .56622 | .03114 | 00520 | .00300 | .02425 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | /Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | *** | | | | | | | |----------|------------|------------|--------------|-----------|---------|---------| | ppm | ppm | bbw | ppm | ppm | | | | .00371 | .00269 | 00828 | .00411 | . 36345 | | | | .00053 | .00153 | .00761 | .00053 | .00209 | | | | 14.186 | 56.871 | 91.909 | 12.920 | . 57490 | | | | .00334 | .00161 | 01366 | .00374 | .36493 | | | | .00408 | .00377 | 00290 | .00449 | .36197 | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | 1100110011 | HOOHEOR | HOOHEOK | HOCHECK | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | * Y | *** | | *** | teer teer | | | | 371.030 | | *** | seer seer | 1000 1100 | - | **** | | 9805 | | *** | 5904° 14804° | was sur | *** | | | 318.9130 | 3 | 100 War | ww war | **** | - | | | .192882 | 6 | **** ***** | 1400 ELEC | | *** | ··· | | | | | | | | | | 9792 | | *** | blick Gods | | 100 100 | | | 9819 | | **** | 1800- 1000- | *** | *** | ···· | thod: 60102007 Sample Name: ICV/CCV in Time: 07/27/00 12:55:14 squarent: Operator: GSP car CONC Corr. Factor: 1 | | | | • | | | | | |---------------------------------------|---|--|--|---|---|---|--| | 1 m
1 Ls
2 Ds V
2 RSD | Ag3280
ppm
.49587
.00085
.17066 | A13082
ppm
10.040
.014
.13705 | As1890
ppm
1.0028
.0050
.49799 | B_2496
ppm
.99642
.00366
.36764 | Ba4934
ppm
.99548
.00018
.01810 | Be3130
ppm
.50888
.00085
.16782 | Ca3179
ppm
10.311
.027
.26670 | | | .49647
.49527 | 10.050
10.030 | 1.0063
.99924 | . 99383
. 99901 | . 99560
. 99535 | .50948
.50827 | 10.330
10.291 | | Sayoe
Sayoe | OC Pass
.50000
10.000 | QC Pass
10.000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | QC Pass
.50000
10.000 | QC Pass
10.000
10.000 | | elem
Undts
Avge
SDev
RSD | Cd2265
ppm
.51099
.00134
.26141 | Co2286
ppm
1.0101
.0024
.24185 | Cr2677
ppm
1.0113
.0020
.20147 | Cu3247
ppm
.98748
.00017
.01746 |
Fe2714
ppm
10.184
.033 | Fe2599
ppm
10.210
.013
.12627 | K_7664
ppm
9.7484
.0088 | | #1
#2 | .51193
.51004 | 1.0118
1.0084 | 1.0127
1.0099 | . 98736
. 98760 | 10.207
10.161 | 10.219
10.201 | 9.7422
9.7546 | | Page
1980
1980
1980
1980 | QC Pass
.50000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | NOCHECK | QC Pass
10.000
10.000 | QC Pass
10.000
10.000 | | | Mg2790
ppm
10.193
.013
.12914 | Mn2576
ppm
1.0090
.0012
.12224 | Mo2020
ppm
1.0029
.0033
.33078 | Na3302
ppm
9.5897
.0439
.45813 | N12316
ppm
1.0127
.0011
.10683 | Pb2203
1.0136
.0007
.07199 | Se1960
1.0162
.0004
.04177 | | ii
12 | 10.203 | 1.0098
1.0081 | 1.0006
1.0053 | 9.6208
9.5587 | 1.0135
1.0119 | 1.0141 | 1.0159
1.0165 | | Enrors
Malue
Range | QC Pass
10.000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | QC Pass
10.000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | QC Pass
1.0000
10.000 | | Elem
Units
Evge
GDev
&RSD | Sb2068
ppm
.96555
.00914
.94643 | Sn1899
ppm
1.0127
.0016
.15874 | Sr4215
ppm
1.0080
.0016
.16145 | Tí3349
ppm
.98931
.00094
.09463 | T11908
ppm
1.0027
.0052
.52073 | V_2924
ppm
1.0030
.0009
.09457 | Zn2062
ppm
1.0332
.0032
.31180 | | #1
#2 | .95908
.97201 | 1.0138
1.0115 | 1.0069
1.0092 | . 98997
. 98865 | .99900
1.0064 | 1.0036
1.0023 | 1.0355
1.0309 | | Errors
Value
Range | QC Pass
1.0000
10.000 | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | Annivers Connect | Apalysis | Report | ₽C Sta | ndard | 07/27 | /00 01:00:0 |)9 PM | page 2 | |--------------------------|----------|------------|--------------|----------|-----------------------------|--------------|--------------| | Units
Avge | ppm | ppm | ppm | mag | mag | | | | Avge | 1.0102 | 1.0153 | 1.0223 | 1.0132 | .99061 | | | | SDev | .0036 | .0007 | .0034 | .0023 | .00498 | | | | ≹ %RS D | .35698 | .06959 | . 33325 | . 23069 | . 50238 | | | | #1 | 1.0128 | 1.0148 | 1.0247 | 1.0115 | . 98709 | | | | **#2 | 1.0077 | 1.0158 | 1.0199 | 1.0148 | . 99413 | | | | Errors
Value
Range | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | IntStd | 1 | 2 | 3 | 4 | 5 . | 6 | 7 | | Hode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | E1 em | Y | war was | \$150° 1246° | *** | ww | maje Avin- | hour sour | | avlen | 371.030 | **** | | nu sur | *** | TARKET THOMP | **** | | Avge | 9726 | **** | water wager | | *** | way that | Men mass. | | 6Dev | 33.34520 | **** | rice and | war war | | we we | Sect soor | | KRSD | .3428450 | 5784° WAA* | ***** | war boar | tor war | 1000 1000 | MAY MAA* | | 1 | 9702 | *** | **** | *** **** | 1100 1100 | | Mary water | | #2 | 9750 | - | *** | ww | 1000 Mari | *** | suiter same: | Analysis Report Blank Sample 07/27/00 01:05:12 PM Operator: GSP page 1 thod: 60102007 Sample Name: ICB/CCB in Time: 07/27/00 13:00:17 pmment: cde: CONC Corr. Factor: 1 | | | | • | | | | | |---------------------------------------|---|---|---|---|---|--------------------------------------|-------------------------------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00084 | .02950 | .00272 | .00305 | .00090 | .00053 | .02552 | | SDev | .00070 | .00383 | .00176 | .00013 | .00011 | .00004 | .00019 | | %RSD | 83.295 | 12.994 | 64.627 | 4.4003 | 12.267 | 6.7577 | .76593 | | #1 | .00133 | .03222 | .00147 | .00296 | .00098 | .00055 | .02566 | | #2 | | .02679 | .00396 | .00315 | .00082 | .00050 | .02538 | | Errors | LC Pass | High | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00062 | .00088 | .00156 | .00038 | .02291 | .01405 | 00546 | | SDev | .00005 | .00042 | .00022 | .00016 | .01065 | .00077 | .00430 | | %RSD | 7.4048 | 47.474 | 13.892 | 41.769 | 46.463 | 5.4894 | 78.770 | | #1
#2 | .00059 | .00117 | .00171
.00141 | .00026
.00049 | .03044
.01539 | .01459
.01350 | 00850
00242 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | LC Pass | LC Pass | | High | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Low | 00500 | 01000 | 00500 | 01000 | | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.02363
.00201
8.5215 | Mn2576
ppm
.00087
.00014
16.231 | Mo2020
ppm
.00195
.00015
7.8958 | Na3302
ppm
.00181
.01802
997.46 | Ní2316
ppm
.00141
.00088
62.717 | Pb2203
.00060
.00135
226.47 | Se1960
00169
.00033
19.652 | | #1 | .02505 | .00097 | .00184 | .01455 | .00203 | .00155 | 00193 | | #2 | | .00077 | .00206 | 01093 | .00078 | 00036 | 00146 | | Errors | LC Pass | High | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00252 | .00362 | .00090 | .00120 | .00054 | .00103 | .00061 | | SDev | .00244 | .00072 | .00004 | .00017 | .00077 | .00005 | .00023 | | CRSD | 96.986 | 19.964 | 4.3944 | 14.083 | 142.67 | 4.9584 | 38.215 | | #1
#2 | .00425 | .00311 | .00092
.00087 | .00132
.00108 | 00000
.00108 | .00099
.00106 | .00078
.00045 | | Errors | LC Pass | digh | .05000 | .01000 | .00500 | .00500 | .01000 | .01000 | .02000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Cie m | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | |) (yens | Report | Blank : | Sample | 07/27, | /00 01:05:: | 12 PM | page 2 | |---|---|-----------------------------------|----------------------------------|----------------------------------|--|------------------------|--------------| | COST
COST
COST
COST | ppm
00041
.00097
235.61 | ppm
.00110
.00251
228.18 | ppm
00156
.00170
109.56 | ppm
00176
.00035
19.964 | ppm
.00082
.00001
.74985 | | | | #1
#2 | 00110
.00027 | .00287
00067 | 00276
00035 | 00151
00201 | .00081
.00082 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | IntStd
Mode
Slem
Waylen
Voe
SDev
ARSD | 1
Counts
Y
371.030
9908
70.27495
.7092688 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | 11
#2 | 9858
9958 | 1007 Line- | was the | the tipe | **** ********************************* | 1000 1000
1000 1000 | | 1.4 -1.4 60102007 Sample Name: 007534-2 : 07/27/00 13:05:20 ONC Corr. Factor: 1 | 100 | | · I GOOD ; | * | | | | | |---------------------------------------|---|---|---|---|---|--|---| | ASD | Ag3280 | Al3082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | | ppm | | .00031 | 1.3739 | .00197 | .01042 | .01011 | .00006 | 3.5619 | | | .00029 | .0012 | .00035 | .00044 | .00002 | .00001 | .0126 | | | 94.216 | .08852 | 17.936 | 4.2073 | .15056 | 15.783 | .35319 | | (1). :
:21 | .00052
.00010 | 1.3730
1.3747 | .00222
.00172 | .01073 | .01010 | .00006 | 3.5530
3.5708 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Con | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | nits
Avge
SDev
RSD | Cd2265
ppm
.00045
.00020
43.512 | Co2286
ppm
00010
.00014
144.44 | Cr2677
ppm
.01269
.00016
1.2986 | Cu3247
ppm
.00159
.00045
28.202 | Fe2714
ppm
L1.2619
.0029
.23196 | Fe2599
ppm
1.2878
.0056
.43596 | K_7664
ppm
.53995
.02513
4.6541 | | #1 | .00059 | 00019 | .01281 | .00191 | L1.2599 | 1.2838 | .55772 | | #2 | | .00000 | .01258 | .00128 | L1.2640 | 1.2918 | .52218 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
1.4506
.0109
.74918 | Mn2576
ppm
.03641
.00017
.45902 | Mo2020
ppm
.00169
.00002
1.3715 | Na3302
ppm
2.1738
.0830
3.8196 | Ni2316
ppm
.00177
.00067
38.052 | Pb2203
.01129
.00083
7.3176 | Se1960
00476
.00228
47.891 | | #1 | 1.4429 | .03630 | .00167 | 2.2 32 5 | .00129 | .01188 | 00315 | | #2 | 1.4583 | .03653 | .00170 | 2.1151 | .00224 | .01071 | 00637 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00501 | .00128 | .01327 | .02481 | 00271 | .00126 | .06812 | | SDev | .00033 | .00070 | .00001 | .00000 | .00374 | .00012 | .00019 | | %RSD | 6.6460 | 54.521 | .03534 | .01744 | 137.83 | 9.8552 | .28384 | | #1 | .00524 | .00177 | .01327
| .02481 | 00535 | .00135 | . 0679 8 | | #2 | .00477 | .00079 | .01328 | .02481 | 00007 | | . 06825 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | £ lem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | ng 58
200
200
1
2
2
2
3
7 rors | ppm
.01432
.00337
23.530
.01670
.01194
NOCHECK | ppm
.00978
.00044
4.5278
.00947
.01010 | ppm
01105
.00531
48.040
00730
01481
NOCHECK | ppm
00162
.00077
47.380
00107
00216
NOCHECK | ppm
.00055
.00006
11.048
.00060
.00051 | | | |--|--|---|---|---|---|--------------|--| | Sta | 1
Counts | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | Y | | | | | | 110 1 0 3 E D | | in the | 371.030 | 1904 1994 | wv • | | | war war | | | | 9811 | *** | war war | - | | | () | | | 14.66832 | ••• | | *** | | maps with | the rite. | | | .1495140 | 1000° 4004 | West base | | with step | **** | | | | 0001 | | | | | | | | | 9821
9800 | **** | we we | WHAT \$1007 | 5000- 000- | | wer war | | | 70 00 | | ***** | *** | **** | we we | **** ***** · · · · · · · · · · · · · · | thod: 60102007 Sample Name: 007534-3 n Time: 07/27/00 13:10:23 | un Time
emment: | : 07/27/00 | 13:10:23 | | 4.5 | Ope. | acor. dor | | |----------------------------------|---|---|---|---|--|--|---| | ode: CO | NC Corr. | Factor: 1 | | | | | | | Flem
Units
Avge
SD&v | Ag3280
ppm
00008
.00044 | A13082
ppm
.67051
.00310 | As1890
ppm
.00178
.00120 | B_2496
ppm
.00698
.00035 | Ba4934
ppm
.01547
.00001 | Be3130
ppm
.00007
.00001 | Ca3179
ppm
.87645
.00421 | | RSD | 535.07 | . 46207 | 67.189 | 5.0559 | .05484 | 12.531 | .48065 | | #1
#2 | .00023
00039 | .66832
.67271 | .00094
.00263 | .00723
.00673 | .01546
.01547 | .00008 | .87347
.87943 | | Errors
ligh
low | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | lem
nits
Vge
Dev
RSD | Cd2265
ppm
.00014
.00031
214.39 | Co2286 ppm00023 .00034 145.64 | Cr2677
ppm
.01157
.00004
.32880 | Cu3247
ppm
.00112
.00022
19.458 | Fe2714
ppm
L.08869
.00195
2.1967 | Fe2599
ppm
.08565
.00005 | K_7664
ppm
.25301
.01129
4.4619 | | | 00007
.00036 | .00001
00047 | .01160
.01154 | | L.08732
L.09007 | .08569
.08562 | . 26099
. 24502 | | erors
con
ew | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC LOW
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | E LS | Mg2790
ppm
.88561
.00658
.74350 | Mn2576
ppm
.00389
.00001
.34939 | Mo2020
ppm
.00107
.00108
100.80 | Na3302
ppm
2.3747
.0521
2.1919 | N12316
ppm
.00129
.00059
45.900 | Pb2203
.00172
.00022
12.529 | Se1960
00183
.00191
104.23 | | Ż. | . 88096
. 89027 | .00389
.00388 | .00184 | 2.3379 2.4116 | .00171
.00087 | .00157
.00187 | 00318
00048 | | igh
CW | LC Pass
500.00
50000 | LC Pass
25.000
01000 | LC Pass
50.000
01000 | LC Pass
100.00
-1.0000 | LC Pass
100.00
00500 | LC Pass
150.00
00500 | LC Pass
50.000
01000 | | LS
LE
TE
TOBY
TESD | Sb2068
ppm
.00630
.00049
7.7080 | Sn1899
ppm
00041
.00013
32.566 | Sr4215
ppm
.00658
.00001
.11042 | Ti3349
ppm
.01057
.00006
.55881 | T11908
ppm
00507
.00132
26.059 | V_2924
ppm
.00089
.0006
6.7824 | Zn2062
ppm
.02024
.00002
.11564 | | #1
#2 | .00595
.00664 | 00051
00032 | .00658
.00657 | .01052
.01061 | 00601
00414 | .00085
.00094 | .02 02 2
.02 02 6 | | Errors
High
Low | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Units
Avge
SDev
&RSD | ppm
.00461
.00055
11.947 | ppm
.00028
.00060
215.80 | ppm
00732
.00234
31.941 | ppm
.00090
.00170
187.65 | ppm
.00037
.0006
15.670 | | | |--|---|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|--------------|--------------| | #1
#2 | .00500
.00422 | 00015
.00070 | 00897
00566 | 00030
.00211 | .00041
.00033 | | | | Errors
Wigh | NOCHECK / | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd
Mode
Iem
Mavlen
Vge
Pev
RSD | 1
Counts
Y
371.030
9748
32.49584
.3333600 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | †1
†2 | 9725
9771 | **** | eren elek- | Mar had | table spar | Name" Name" | come, come, | 07/27/00 01:20:21 PM thod: 60102007 Sample Name: 007534-4 in Time: 07/27/00 13:15:26 sument: pde: CONC Corr. Factor: 1 Operator: GSP | | | | • | | | | | |---------------------------------------|-----------------------------------|---|---|--|---|--------------------------------------|-------------------------------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00015 | 1.8349 | .00409 | .00669 | .01124 | .00013 | 1.2425 | | SDev | .00047 | .0130 | .00158 | .00021 | .00007 | .00003 | .0001 | | %RSD | 322.56 | .70607 | 38.664 | 3.2027 | .58908 | 24.348 | .00470 | | #1 | .00048 | 1.8257 | .00297 | .00654 | .01128 | .00015 | 1.2425 | | #2 | 00019 | 1.8440 | .00521 | .00685 | .01119 | .00011 | 1.2424 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00013 | 00031 | .01530 | .00177 | L.24294 | .22702 | .28436 | | SDev | .00008 | .00034 | .00026 | .00000 | .00742 | .00028 | .02482 | | %RSD | 65.484 | 110.28 | 1.7297 | .21564 | 3.0552 | .12308 | 8.7272 | | #1 | .00018 | 00007 | .01549 | .00176 | L.24819 | .22722 | .30191 | | #2 | | 00054 | .01511 | .00177 | L.23769 | .22683 | .26682 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.89743
.00433 | Mn2576
ppm
.00392
.00003
.76812 | Mo2020
ppm
.00177
.00030
16.842 | Na3302
ppm
2.1291
.1151
5.4064 | Ní2316
ppm
.00175
.00045
25.916 | Pb2203
.00120
.00080
66.519 | Se1960
00386
.00083
21.422 | | #1 | .90049 | .00394 | .00198 | 2.2105 | .00143 | .00064 | 00444 | | #2 | .89437 | .00390 | .00156 | 2.0477 | .00207 | .00176 | 00327 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Seits | ppm | Avge | .00407 | 00113 | .00631 | .02685 | 00777 | .00142 | .23783 | | SDev | .00071 | .00124 | .00003 | .00067 | .00131 | .00039 | .00070 | | &RSD | 17.400 | 109.17 | .42773 | 2.4754 | 16.807 | 27.160 | .29527 | | #1 | .00457 | 00201 | .00633 | .02638 | 00685 | .00170 | . 23733 | | #2 | .00357 | 00026 | .00629 | .02732 | 00869 | .00115 | . 23833 | | Errors | LC Pass | Ligh | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | ON | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | 4. 4.4 | | | | | | | | |----------------|-----------|-------------|-------------|-------------|--|------------|-------------| | | ppm | ppm | ppm | mag | ppm | | | | | ື . 00234 | .00063 | 01373 | .00107 | .00094 | | | | | .00141 | .00049 | .00452 | .00102 | .00013 | | 4 A | | 1,50% | 60.081 | 78.522 | 32.937 | 94.955 | 14.127 | | | | | .00135 | .00028 | 01693 | .00179 | .00103 | | | | 3 2 | .00334 | .00098 | 01053 | .00035 | .00084 | | | | Errors
High | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | Low | | 2 | ang. | | | _ | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | / | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | t em | , Y | **** | upon upher | rate, elen, | AND POSE | sape teas: | **** | | way len | 371.030 | des mer. | case com | **** | ************************************** | *** | WWW
1881* | | Dina | 9783 | 100 | **** | *** | where weeks | *** | | | | 18.29984 | *** | | **** | teer voe. | *** | , 1982-1881 | | HSD | .1870648 | | W66* 1048* | ***** 1951. | 1541 ² 4444 ² | 1997 444 | | | HI. | 9770 | Wat 1982 | **** | **** | *** | **** | ···· | | 2 | 9796 | 1000° 1000° | A100, 2000. | 5060° 5666° | 4990° 4499° | **** | | **60102007** Sample Name: 007534-5 **07/27/00** 13:20:30 Corr. Factor: 1 | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|--|---|---|--|---|----------------------------|-------------------------------------| | | ppm | | 00008 | .29552 | .00306 | .00846 | .02526 | .00010 | 1.9904 | | | .00021 | .00397 | .00163 | .00093 | .00030 | .00002 | .0270 | | | 245.96 | 1.3425 | 53.497 | 11.045 | 1.1691 | 24.534 | 1.3542 | | | .00006
00023 | .29271
.29832 | .00421
.00190 | .00780 | .02505
.02546 | .00008 | 1.9713
2.0094 | | ers
Tr | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | LOD | Cd2265 | Co2286. | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | 15 | ppm | 14GE | .00032 | .00015 | .02005 | .01796 | L.08023 | .06641 | .57104 | | Dev | .00027 | .00006 | .00009 | .00018 | .00321 | .00026 | .00896 | | 2RSD | 85.574 | 40.655 | .45738 | 1.0126 | 4.0040 | .39893 | 1.5688 | | #1 | .00013 | .00019 | .01998 | .01784 | L.07795 | .06622 | . 56470 | | #2 | .00051 | | .02011 | .01809 | L.08250 | .06659 | . 57737 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC LOW | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
&RSD | Mg2790
ppm
2.7345
.0371
1.3550 | Mn2576
ppm
.01299
.00018
1.4009 | Mo2020
ppm
.00321
.00025
7.8146 | Na3302
ppm
2.2863
.1276
5.5809 | Ní2316
ppm
.00305
.00065
21.326 | .00220
.00188
85.537 | Se1960
00184
.00055
30.006 | | #1 | 2.7083 | .01286 | .00338 | 2.3765 | .00351 | .00087 | 00223 | | #2 | 2.7607 | .01312 | .00303 | 2.1961 | .00259 | | 00145 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00579 | .00028 | .01231 | .00170 | 00669 | .00037 | .09334 | | SDev | .00236 | .00064 | .00015 | .00021 | .00066 | .00019 | .00100 | | %RSD | 40.743 | 233.35 | 1.2123 | 12.508 | 9.8733 | 50.645 | 1.0674 | | #1 | .00745 | .00073 | .01221 | .00185 | 00622 | .00050 | . 09264 | | #2 | .00412 | 00018 | .01242 | .00155 | 00716 | .00024 | . 09405 | | Errors | LC Pass | LC Pass | LC ^r Pass | LC Pass | LC Pass | LC Pass | LC Pass | | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Dnits | ppm | ppm | ppm | ppm | ppm | | | |-----------------|-------------------|-----------|---------------|------------|------------|---------|------------| | eowe: | .00477 | .00092 | 01134 | .00290 | .00035 | | | | SDEV | .00125 | .00220 | .00270 | .00217 | .00002 | | | | RSD | 26.184 | 239.57 | 23.789 | 74.876 | 6.2311 | | | | B a | .00389 | 00064 | 00943 | .00137 | .00036 | | | | 2 | .00565 | .00247 | 01325 | .00444 | .00033 | | | | Errors
Sigh; | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | | | | | | | | | 10000 | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | ¥ | 1000 1000 | | Apple 2000 | | *** | | | | 371.030 | **** | 1500 1000 | was sally | **** | | | | | _e 9693 | **** | w w | Name again | **** | *** | | | | 83.99931 | - www. | *** | *** | | **** | Mark Areas | | | .8665670 | **** | my mar | | **** | **** | mer war | | | | | | | | | | | | 9753 | - | though Miller | when boths | door, seen | **** | | | | 9634 | **** | MAN MAN | 1000 1000 | | *** | | ethod: 60102007 Sample Name: 007534-6 un Time: 07/27/00 13:25:34 comment: lode: CONC Corr. Factor: 1 Operator: GSP | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |-------------|--------------------------------------|------------------|---------|---------------|--------------|------------------|---------| | Units | ppm | ppm | mag | mag | ppm | ppm | mag | | Avge | .00104 | 4.3868 | .00355 | .02178 | .00869 | .00011 | .48209 | | SDev | .00108 | .0124 | .00035 | .00026 | .00003 | .00003 | .00512 | | RSD | 104.30 | .28338 | 9.8644 | 1.2067 | .30340 | 28.068 | 1.0612 | | | | | | | | | | | 1 | .00027 | 4.3956 | .00330 | .02196 | .00867 | .00009 | .47847 | | #2 | .00180 | 4.3780 | .00380 | .02159 | .00870 | .00013 | . 48571 | | | | | | | | | | | Errors | LC Pass | high | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | LOW | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | | | | | | | | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00041 | .00024 | .01694 | . 00368 | L3.5810 | 3.6497 | .80211 | | SDev | .00010 | .00003 | .00077 | . 00086 | .0162 | .0186 | .02896 | | RSD | 24.775 | 12.761 | 4.5757 | 23.486 | . 45368 | .50853 | 3.6100 | | | | | | | | | | | 1 | .00034 | .00022 | .01639 | .00307 | L3.5695 | 3.6365 | .78163 | | #2 | .00048 | .00026 | .01749 | .00429 | L3.5925 | 3.6628 | .82258 | | | | | | | | | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC LOW | LC Pass | LC Pass | | High. | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | CON | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | | | | U. 7700 | NG 00 77 1 2 | D-0007 | 0-1040 | | l Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni2316 | Pb2203 | Se1960 | | inits | ppm | ppm | ppm | ppm
4 0577 | ppm | 01707 | 00082 | | Avge: | .98359 | .03526 | .00183 | 4.0537 | .00221 | .01327
.00102 | .00044 | | | .00659 | .00008 | .00005 | . 2507 | .00023 | 7.7180 | 53.098 | | | .66982 | .22966 | 2.9411 | 6.1842 | 10.331 | 7.7100 | 33.076 | | | 07807 | 07500 | .00187 | 3.8764 | .00205 | .01255 | 00113 | | | . 97 89 3
. 98 8 25 | .03520
.03531 | .00180 | 4.2309 | .00237 | .01400 | 00051 | | | .70023 | .03331 | .00100 | 4.2007 | .00207 | . 0 2 4 0 0 | .00001 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | | | | | | | | | | A Same | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | | ppm | mag | maa | ppm | ppm | ppm | ppm | | Elvice. | .00456 | .00228 | .00544 | .03807 | 00664 | .00427 | .18810 | | Single T | .00058 | .00099 | .00006 | .00081 | .00054 | .00100 | .00231 | | RSD | 12.748 | 43.549 | 1.0884 | 2.1174 | 8.1960 | 23.424 | 1.2287 | | | | | | | | | | | #1 | .00497 | .00158 | .00540 | .03864 | 00702 | .00356 | .18647 | |) 12 | .00415 | .00298 | .00548 | .03750 | 00625 | .00498 | .18973 | | | | | | | | | | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | LOW | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | | | | | | | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Units | ppm | ppm | ppm | bbw | ppm | | | |-------------|----------|----------------|---------------------------------------|-------------|-------------|------------|--------------| | Avge | .02112 | . 00935 | 00659 | .00206 | .00138 | | | | SDev | .00793 | .00242 | .00441 | .00155 | .00016 | | | | *RSD | 37.532 | 25.906 | 66.879 | 75.104 | 11.436 | | | | #1 | .01552 | .01106 | 00971 | .00315 | .00127 | | . | | #2 | .02673 | .00764 | 00347 | .00097 | .00149 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | High
Low | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | | *** | ···· | **** | | - | | Wavlen | 371.030 | | **** | 1000 1001· | ector teatr | from spins | Meth. serie. | | Avge | 9739 | **** | | 1000 VIII | **** | - | | | SDev | 71.21753 | *** | was sur- | MAN. 1995 | ww ****· | *** | Par 484 | | *RSD | .7312262 | upar unar | **** | 385° 5186° | | 100° 100° | ,,,,, w. | | 4 1 | 9689 | · ponds- anti- | · · · · · · · · · · · · · · · · · · · | Aure, door, | war war | | *** | | #2 | 9790 | | 5000° VESS- | 5574 5570 | espe water | we we | | thod: 60102007 Sample Name: 007534-7 d Time: 07/27/00 13:30:37 ment: de: CONC Corr. Factor: 1 Operator: GSP | Elem
undts
Vge
SDev
BRSD | Ag3280
ppm
.00034
.00045
132.55 | A13082
ppm
5.0702
.0189
.37200 | As1890
ppm
00082
.00006
7.1784 | B_2496
ppm
.01698
.00077
4.5237 | Ba4934
ppm
.01652
.0000
.01883 | Be3130
ppm
.00014
.00003
24.162 | Ca3179
ppm
19.536
.003 | |---------------------------------------|---|---|---|---|---|---|-------------------------------------| | #1 | .00066 | 5.0835 | 00078 | .01643 | .01652 | .00017 | 19.538 | | #2 | .00002 | 5.0569 | 00086 | .01752 | .01653 | | 19.534 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 |
Fe2599 | K_7664 | | Units | ppm | Avge | .00020 | 00019 | .02298 | .00322 | L.64421 | .65132 | 1.5949 | | SDev | .00003 | .00015 | .00033 | .00004 | .00386 | .00043 | .0024 | | %RSD | 12.054 | 77.352 | 1.4495 | 1.2467 | .59938 | .06655 | .15284 | | #1 | .00019 | 00029 | .02274 | .00319 | L.64694 | .65163 | 1.5966 | | #2 | | 00009 | .02321 | .00325 | L.64148 | .65101 | 1.5931 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
4.5650
.0034
.07467 | Mn2576
ppm
.26054
.00006
.02164 | Mo2020
ppm
.00219
.00063
28.939 | Na3302
ppm
3.5943
.0037
.10182 | Ni2316
ppm
.00359
.00078
21.740 | Pb2203
.00266
.00008
2.8753 | Se1960
00106
.00026
24.800 | | #1 | 4.5674 | .26050 | .00174 | 3.5969 | .00414 | .00261 | 00124 | | #2 | 4.5626 | .26058 | .00263 | 3.5917 | .00304 | .00272 | 00087 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00506 | .00083 | .05959 | .03004 | 00649 | .00312 | .01572 | | SDev | .00079 | .00097 | .00004 | .00001 | .00379 | .00015 | .00041 | | -RSD | 15.703 | 116.55 | .07061 | .01802 | 58.362 | 4.6823 | 2.6298 | | #1 | .00562 | .00015 | . 05956 | ,03004 | 00381 | .00323 | .01601 | | #2 | | .00152 | . 05962 | .03004 | 00917 | .00302 | .01542 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | ppm | ppm | ppm | ppm | ppm | | | |--------------|----------|--|-------------|-------------|----------|-------------|---------| | | .00541 | .00129 | 01070 | .00376 | .00110 | | 現 : | | | .00169 | .00073 | .00664 | .00292 | . 00003 | | | | | 31.291 | 56.7 30 | 62.033 | 77.752 | 2.2879 | | | | | | | | | | | | | | .00422 | .00181 | 01540 | .00582 | .00111 | | | | 2 | .00661 | .00077 | 00601 | .00169 | .00108 | | | | | NOOHEOK | NOOUTOK | NOOREOK | HOOLICOK | NOCHECK | | | | Frors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | | | | | | | | | | <u>.</u> | | | | | | | | IntStd | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Hade: | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Sien . | Υ | - | *** | rathe pates | **** | wher blok- | | | Wavlen | 371.030 | | Agree Money | 1984 1984 · | **** | war that | * | | egy : | 9614 | **** | with some | tippe sales | wer wher | *** | | | SDE V | 51.31427 | ************************************** | 1110 1965 | | *** | | www. | | 30. | .5337524 | **** | sur ww | 1010° 6490° | | www. | **** | | | | | | | | | | | Harton Art | 9578 | | , co. 180 | **** | | | | | 2 2 | 9650 | *** | w | | *** | 1000° 1415° | | 60102007 Sample Name: 007534-8 ne: 07/27/00 13:35:40 Corr. Factor: 1 | Lem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |--|--|---|--|--|---|---|---| | ini ts | ppm | Wge . | .00014 | .99517 | .00262 | .02664 | .02089 | .00009 | 16.646 | | BROV | .00023 | .00298 | .00140 | .00057 | .00001 | .00000 | .027 | | RSD | 161.65 | . 29931 | 53.220 | 2.1431 | .05903 | 1.7814 | .15961 | | | | | | | 20000 | 00010 | 16 607 | | | 00002 | .99727 | .00164 | .02704 | .02090 | .00010 | 16.627 | | | .00031 | .99306 | .00361 | .02624 | .02088 | 00009 | 16.665 | | erors. | LC Pass | ES ans | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | E PAR | | | | | | | | | | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | | ppm | ppm | ppm | ppm | ppm
L.86668 | ppm
.86547 | ppm
2.1044 | | A Cle | .00014 | 00065 | .01857 | .00126
.00019 | .00482 | .00162 | .0050 | | RSD | .00002
13.362 | .00003
4.0223 | .00020
1.0748 | 15.356 | .55571 | .18767 | .23545 | | anov . | 13.362 | 4.0223 | 1.0740 | 13.336 | | .10/0/ | . 20040 | | #1 | .00015 | 00064 | .01843 | .00113 | L.87009 | .86432 | 2.1079 | | #2 | .00013 | 00067 | .01871 | .00140 | L.86328 | .86662 | 2.1009 | | | | | | | | | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | N12316 | Pb2203 | Se1960 | | Units | ppm | mag | mag | ppm | ppm | | | | Avge | 2.9203 | .26236 | .00333 | 8.3220 | .00300 | .00083 | 00354 | | | | | | | | | ^^1 | | SDev | .0052 | .00018 | .00031 | .0384 | .00020 | .00224 | .00161 | | | .0052
.17656 | .00018
.07036 | .00031
9.4311 | . 46083 | .00020
6.5782 | .00224
269.56 | 45.465 | | SDev
RSD | .17656 | .07036 | 9.4311 | . 46083 | 6.5782 | 269.56 | 45.465 | | SDev
*RSD
#1 | .17656
2.9167 | .07036 | 9.4311 | . 46083
8. 3491 | 6.5782 | 269.56 | 45.465
00467 | | SDev
RSD | .17656 | .07036 | 9.4311 | . 46083 | 6.5782 | 269.56 | 45.465 | | SDev
*RSD
#1 | .17656
2.9167 | .07036 | 9.4311 | . 46083
8. 3491 | 6.5782 | 269.56
.00241
00075
LC Pass | 45.465
00467
00240
LC Pass | | SDav
RSD
#1
#2 | .17656
2.9167
2.9240 | .07036
.26223
.26249 | 9.4311
.00311
.00356 | .46083
8.3491
8.2949
LC Pass | 6.5782
.00286
.00314
LC Pass
100.00 | 269.56
.00241
00075
LC Pass
150.00 | 45.465
00467
00240
LC Pass
50.000 | | SDev
#RSD
#1
#2
Errors | .17656
2.9167
2.9240
LC Pass | .07036
.26223
.26249
LC Pass | 9.4311
.00311
.00356
LC Pass | .46083
8.3491
8.2949
LC Pass | 6.5782
.00286
.00314
LC Pass | 269.56
.00241
00075
LC Pass | 45.465
00467
00240
LC Pass | | SDev
#1
#2
Errors
High
Low | .17656
2.9167
2.9240
LC Pass
500.00
50000 | .07036
.26223
.26249
LC Pass
25.000
01000 | 9.4311
.00311
.00356
LC Pass
50.000
01000 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000 | 6.5782
.00286
.00314
LC Pass
100.00
00500 | 269.56
.00241
00075
LC Pass
150.00
00500 | 45.465
00467
00240
LC Pass
50.000
01000 | | SDev
RSD
#1
#2
Errors
High
Low
Elem | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000 | 6.5782
.00286
.00314
LC Pass
100.00
00500 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924 | 45.4650046700240 LC Pass 50.00001000 Zn2062 | | SDev
RSD
#1
#2
Errors
High
Low
Elem
Units | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm | 45.465
00467
00240
LC Pass
50.000
01000 | | #1
#2
Errors
High
Low
Elem
Units
Avge | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 | |
#1
#2
Errors
High
Low
Elem
Units
Avge | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD
#1
#2 | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56
00033
.00072 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462
.02887
.02845 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319
00437 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 .09606 .09676 | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD
#1
#2
Errors | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778
.00544
.00763
LC Pass | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56
00033
.00072
LC Pass | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058
.04213
.04224
LC Pass | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462
.02887
.02845
LC Pass | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319
00437
LC Pass | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825
.00296
.00322
LC Pass | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 .09606 .09676 LC Pass | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD
#1
#2
Errors
High | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778
.00544
.00763
LC Pass
50.000 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56
00033
.00072
LC Pass
20.000 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058
.04213
.04224
LC Pass
10.000 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462
.02887
.02845
LC Pass
20.000 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319
00437
LC Pass
20.000 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 .09606 .09676 LC Pass 50.000 | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD
#1
#2
Errors | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778
.00544
.00763
LC Pass | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56
00033
.00072
LC Pass | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058
.04213
.04224
LC Pass | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462
.02887
.02845
LC Pass | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319
00437
LC Pass | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825
.00296
.00322
LC Pass
100.00 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 .09606 .09676 LC Pass | | #1
#2
Errors
High
Low
Elem
Units
Avge
SDev
%RSD
#1
#2
Errors
High | .17656
2.9167
2.9240
LC Pass
500.00
50000
Sb2068
ppm
.00654
.00155
23.778
.00544
.00763
LC Pass
50.000 | .07036
.26223
.26249
LC Pass
25.000
01000
Sn1899
ppm
.00020
.00074
373.56
00033
.00072
LC Pass
20.000 | 9.4311
.00311
.00356
LC Pass
50.000
01000
Sr4215
ppm
.04218
.00008
.18058
.04213
.04224
LC Pass
10.000 | .46083
8.3491
8.2949
LC Pass
100.00
-1.0000
Ti3349
ppm
.02866
.00030
1.0462
.02887
.02845
LC Pass
20.000 | 6.5782
.00286
.00314
LC Pass
100.00
00500
T11908
ppm
00378
.00084
22.200
00319
00437
LC Pass
20.000 | 269.56
.00241
00075
LC Pass
150.00
00500
V_2924
ppm
.00309
.00019
6.0825
.00296
.00322
LC Pass
100.00 | 45.4650046700240 LC Pass 50.00001000 Zn2062 ppm .09641 .00049 .51277 .09606 .09676 LC Pass 50.000 | | Units | ppm | ppm | ppm | mad | ppm | | | |---------------|-------------------|-------------|---------------|---------|---------------|-------------|--------------| | Avge | .00156 | .00047 | 01510 | .00223 | .00042 | | | | SDev | .00352 | .00160 | .00256 | .00113 | .00000 | | | | A CRSD | 226.35 | 341.30 | 16.951 | 50.704 | .06611 | | | | 31 | .00405 | .00160 | 01690 | .00143 | .00042 | | | | #2 | 00093 | 00066 | 01329 | .00304 | .00042 | | | | Effors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | align: | | | | | | | | | | | | | | | | | | e Sta | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | , Y | After Amer | **** | | WW 1880 | | | | | 371.030 | ···· | adopte deploy | ***** | 1000 UV | - | | | | ў 9772 | *** | *** | wer war | region store. | **** | w | | - v 1 | 5.754219 | *** | taker white | **** | toper tools | sales sales | | | | .05 88 847 | **** | show solve | www.uw | SARP SERP | uy | stern, 40194 | | | 9768 | 1000° 1000° | 65m/s 4444+ | War war | Active active | *** | 100F 100F | | 100 | * 0774 | *** | *** | **** | ***** | **** | | Method: 60102007 Sample Name: 007534-9 Fun Time: 07/27/00 13:40:44 comment: code: CONC Corr. Factor: 1 Operator: GSP | | A = 7000 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |----------------|----------------|---------------|-----------|----------------|-------------------|-------------------|---------| | Elem
Units | Ag3280
ppm | ppm
H13002 | MS1030 | ppm | ppm | ppm | ppm | | Avge | 00038 | .17059 | .00254 | .01117 | .01178 | .00006 | 11.781 | | SDev | .00038 | .00243 | .00057 | .00180 | .00011 | .00001 | .041 | | %RSD | 102.28 | 1.4219 | 22.457 | 16.145 | .91838 | 24.572 | . 34544 | | | -,00010 | . 17230 | .00295 | .00990 | .01170 | .00005 | 11.752 | | *#1
*#2 | 00010 | .16887 | .00214 | .01245 | .01185 | .00007 | 11.809 | | 7 2 | .00003 | .10007 | | , | | | | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu 3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00025 | 00056 | .01255 | .00047 | L.07465 | . 06257 | 1.1976 | | SDev | .00019 | .00020 | .00026 | .00023 | . 00366 | .00048 | .0168 | | %RSD | 75.426 | 35.783 | 2.0468 | 50.020 | 4.8999 | . 76967 | 1.4065 | | * 1 | .00039 | 00042 | .01273 | .00063 | L.07724 | .06223 | 1.2095 | | #2 | .00012 | 00070 | .01237 | .00030 | L.07207 | .06291 | 1.1857 | | | | | | | | 10 5 | LC Pass | | Errops | LC Pass | LC Pass | LC Pass | LC
Pass | LC Low | LC Pass
40.000 | 50.000 | | | 20.000 | 20.000 | 100.00 | 100.00 | 500.00
40.000 | 10000 | -1.0000 | | | 00500 | 01000 | - , 00500 | 01000 | 40.000 | | 1.0000 | | | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | | mag | ppm | mag | ppm | mag | | | | | 3.1868 | .13797 | .00154 | 2.8925 | .00127 | .00040 | 00125 | | | .0130 | .00065 | .00038 | .0103 | .00054 | .00075 | .00040 | | | . 40868 | .47289 | 25.040 | . 35652 | 42.216 | 185.06 | 32.333 | | | 3.1776 | .13751 | .00126 | 2.8852 | .00089 | .00093 | 00096 | | | 3.1960 | .13843 | .00181 | 2.8998 | .00165 | 00012 | 00153 | | | | | | | 10.5 | 1 C 0 a a a | LC Pass | | Sin ons | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass
100.00 | LC Pass
150.00 | 50.000 | | | 500.00 | 25.000 | 50.000 | -1.0000 | 00500 | 00500 | 01000 | | | 50 00 0 | 01000 | 01000 | -1.0000 | .00500 | | | | | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | | ppm. | ppm | ppm | ppm | ppm | ppm | ppm | | | .00576 | 00006 | .03085 | .00425 | 00614 | .00067 | .06366 | | | .00024 | .00078 | .00008 | .00009 | .00050 | .00013 | .00124 | | =∃D i ; | 4.0865 | 1197.3 | . 26473 | 2.1213 | 8.1073 | 19.147 | 1.9443 | | | .00593 | 00061 | .03080 | .00418 | 00579 | .00058 | .06278 | | | .00560 | .00048 | .03091 | .00431 | 00649 | .00076 | .06453 | | | * | .00040 | | · | | | | | Enfors | LC Pass | L ittah | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | | . 0007./1 | 000770 | 196071 | 1960/2 | L16707 | | | | | 2203/1 | 2203/2 | 1960/1 | 1900/2 | w.w. / W / | | | | - F | | | | | | | | |---------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-------------|---| | mats
vge
200
RSD | ppm
.00169
.00300
177.67 | ppm
00024
.00038
159.13 | ppm
01487
.00084
5.6584 | ppm
.00555
.00102
18.443 | ppm
.00012
.00001
10.377 | | | | 1
12 | .00381
00043 | 00051
.00003 | 01547
01428 | .00628
.00483 | .00012 | | | | Errors
Wigh
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | . Y | *** | **** | some some. | about waster | **** | | | Elem
Wavlen | 371.030 | <u>*</u> | | * Soon feeler | speed small | *** | **** | | Avge | 9725 | **** | who entr | 2012, 2206. | nw me | - | And there | | SDev | 26.74162 | *** | \$100° 4000. | 500° 500° | *** | secur place | ander gage. | | %RSD | . 2749905 | 1000* 0001* | 3000° 3100° | 100° 100° | MI ME | | *************************************** | | #1 | 9743 | *** | ALME MAR | gradus MANAS | 6650° 5980° | *** | **** | | #2 | 9706 | ···· | **** | 1000- 2465- | www www | * | we we | **60102007** Sample Name: 007519-1 **6: 07/27/00 13:45:47** CONC Corr. Factor: 1 | lom. | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|---|---|---|--|--|---|--| | Fatta | ppm | Loev | .00027 | .02026 | .00121 | .83299 | .05449 | .00010 | 3.2353 | | Scav | .00023 | .00580 | .00062 | .00665 | .00022 | .00001 | .0218 | | Scsp | 86.673 | 28.612 | 51.176 | .79784 | .40262 | 11.937 | .67456 | | #1
?#2 | .00011 | .02436
.01616 | .00077
.00165 | .83769
.82829 | .05465
.05434 | .00011 | 3.2507
3.2199 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | .Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.00022
.00006
26.551 | Co2286
ppm
00021
.00034
157.50 | Cr2677
ppm
.00093
.00024
25.431 | Cu3247
ppm
.00274
.00005 | Fe2714
ppm
L.04329
.00826
19.070 | Fe2599
ppm
.03037
.00029
.96708 | K_7664
ppm
7.0142
.0453
.64553 | | #1 | .00018 | .00002 | .00076 | .00278 | L.04913 | .03057 | 7.0 46 2 | | #2 | .00026 | 00045 | .00110 | .00271 | L.03745 | .03016 | 6.9822 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
1.9568
.0156
.79873 | Mn2576
ppm
.00293
.00020
6.6771 | Mo2020
ppm
.00002
.00049
2217.3 | Na3302
ppm
H224.41
1.07
.47903 | Ní2316
ppm
00085
.00036
41.638 | .00050
.00155
309.32 | Se1960
00157
.00098
62.259 | | #1 | 1.9679 | .00307 | 00032 | H225.17 | 00060 | .00160 | 00226 | | #2 | 1.9458 | .00279 | .00037 | H223.65 | 00111 | 00060 | 00088 | | Errors | LC Pass | LC Pass | LC Pass | LC High | LC Pass | LC Pass | LC Pass | | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00479 | 00051 | 1.2316 | 00003 | 00391 | .00038 | .02763 | | SDev | .00104 | .00065 | .0055 | .00017 | .00020 | .00000 | .00035 | | %RSD | 21.751 | 126.18 | .44347 | 639.06 | 5.1944 | 1.1163 | 1.2725 | | #1 | .00553 | 00006 | 1.2355 | .00009 | 00376 | .00038 | .02788 | | #2 | .00405 | 00097 | 1.2277 | 00015 | 00405 | .00038 | .02738 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | lem : | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | | | | | | 4.5 | |--------------------------|------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------------|--------------| | mera
.00280
.00823 | ppm
00064
.00245 | ppm
00884
.00100
11.347 | ppm
.00206
.00096
46.693 | ppm
.02088
.00023
1.1220 | | | | 8.2349 | 379.45 | 11.54/ | 46.673 | 1.1220 | | | | .00264
.00296 | .00108
00237 | 00955
00813 | .00138
.00274 | .02105 | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | | | | | | | | | .1
Counts | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | l y | THE LAND | A100 A100 | **** | ****** | | | | 371.030 | 100 100 I | *** | •••• | ***** | | | | 9687 | | **** | Miles 1000* | *** | | | | 41.64541 | - | teatr Mare | 100F 100F | | | Section 1997 | | . 42 99 278 | | | **** | **** | , some sees. | | | 9657 | *** | was 100~ | ww ww | 50.50° 5000° | 980° 110° | | | 9716 | *** | **** *** | **** | 3500° 14000 | 3500° 3000° | | Thos: 60102007 Sample Name: 007519-2 7 Time: 07/27/00 13:50:50 Mnert: DG: CDNC Corr. Factor: 1 Operator: GSP | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|--|---|---|---|--|----------------------------|-------------------------------------| | Units | ppm | Voge | .00037 | .01932 | .00201 | .70151 | .06019 | .00005 | 3.4232 | | SDev | .00050 | .00294 | .00119 | .00115 | .00032 | .00001 | .0113 | | RSD | 133.69 | 15.232 | 59.397 | .16349 | .53724 | 26.089 | .33025 | | ή <u>ι</u>
(2) | .00073 | .02140
.01724 | .00117
.00285 | .70232
.70070 | .06042
.05997 | .00006 | 3.4312
3.4153 | | rrors
igh | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | Cats | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Cats | ppm | Cats | .00016 | 00056 | .00120 | .00528 | L.09000 | .08544 | 6.1468 | | Day | .00007 | .00016 | .00011 | .00022 | .00479 | .00102 | .0419 | | Pay | 45.602 | 28.784 | 9.2882 | 4.1847 | 5.3182 | 1.1902 | .68147 | | 1
2
3 | .00021
.00011 | 00045
00067 | .00128 | .00543
.00512 | L.09339
L.08662 | .08616
.08472 | 6.1764
6.1172 | | aryers
Tan | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
00500 | LC Pass
100.00
01000 | LC Low
500.00
40.000 | LC Pass
40.000
10000 | LC Pass
50.000
-1.0000 | | Lem
In its
Ivge
SDev
IRSD | Mg2790
ppm
1.7638
.0062
.35267 | Mn2576
ppm
.00332
.00007
2.1057 | Mo2020
ppm
.00421
.00028
6.6704 | Na3302
ppm
H177.67
.38
.21142 | N12316
ppm
00170
.00068
39.750 | .00081
.00026
32.217 | Se1960
00254
.00086
33.763 | | †1 | 1.7682 | .00336 | .00441 | H177.93 | 00122 | .00099 | 00315 | | 2 | 1.7594 | .00327 | | H177.40 | 00218 | .00062 | 00194 | | Errors | LC Pass | LC Pass | LC Pass | LC High | LC Pass | LC Pass | LC Pass | | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Tí3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00348 | .00001 | .93683 | .00007 | 00386 | .00021 | .19105 | | SDev | .00252 | .00088 | .00283 | .00013 | .00045 | .00012 | .00035 | | &RSD | 72.399 | 12561. | .30190 | 178.73 | 11.575 | 58.517 | .18379 | | #1 | .00527 | 00062 | . 93883 | .00017 | 00355 | .00012 |
.19129 | | #2 | .00170 | .00063 | . 93483 | 00002 | 00418 | .00030 | .19080 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | Units | ppm | ppm | maq | ppm | ppm | | | |--------------|----------|-----------|---------------------------------------|--|-------------|------------|-------------| | Avge | .00427 | 00092 | 00961 | .00098 | .01827 | | | | SDev | .00097 | .00087 | .00060 | .00099 | .00012 | | | | ***RSD | 22.611 | 95.032 | 6.2608 | 100.35 | .67906 | | | | #1 | .00358 | 00030 | 01004 | .00029 | .01836 | | | | #2 | .00495 | 00153 | 00919 | .00168 | .01818 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | • | | | Skidh
Low | | | | | | | | | Stristd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Υ | *** | · · · · · · · · · · · · · · · · · · · | | | **** | ···· | | May ten | 371.030 | mes arise | war war | ww war | ww ww. | | ww wa | | | 9784 | | MM- 1967. | 111 111 111 111 111 111 111 111 111 11 | **** **** | the tite | **** | | | 69.56715 | | ***** | rook tops. | **** | 3000 3300° | Many state | | FISP: | .7110451 | war war | **** | me me | 100° 100° | sider war | ··· ·· | | | 9735 | - | | \$144° \$564° | 1110 1000 | ABOVE BOOK | SERVI SERVI | | 1 2 | 9833 | *** | **** | | 1160° 1900° | Mar 1000 | ···· | analysis Report QC Standard 07/27/00 02:00:49 PM Operator: GSP page 1 method: 60102007 Sample Name: CCV1 Run Time: 07/27/00 13:55:54 comment: lode: CONC Corr. Factor: 1 | Elem
Units
Avge
SDev
%RSD | Ag3280
ppm
.50198
.00034
.06803 | A13082
ppm
10.033
.003 | As1890
ppm
1.0201
.0038
.37198 | B_2496
ppm
1.0098
.0031
.30527 | Ba4934
ppm
1.0097
.0005
.05361 | Be3130
ppm
.52098
.00006
.01079 | Ca3179
ppm
10.394
.004
.03657 | |---------------------------------------|---|--|--|---|--|---|--| | #1 | .50222 | 10.031 | 1.0227 | 1.0120 | 1.0101 | . 52094 | 10.391 | | #2 | .50174 | 10.035 | 1.0174 | 1.0076 | 1.0094 | . 52102 | 10.397 | | Errors | QC Pass | Value | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.52372
.00104
.19872 | Co2286
ppm
1.0375
.0000 | Cr2677
ppm
1.0392
.0006
.06086 | Cu3247
ppm
.99889
.00054
.05410 | Fe2714
ppm
10.346
.008
.07790 | Fe2599
ppm
10.368
.003 | K_7664
ppm
9.8617
.0094
.09486 | | #1 | .52298 | 1.0375 | 1.0388 | . 99928 | 10.352 | 10.366 | 9.8683 | | #2 | .52445 | 1.0375 | 1.0396 | . 99851 | 10.341 | 10.369 | 9.8551 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .50000 | 1.0000 | 1.0000 | 1.0000 | | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | Elem
Units
Avge
SDev
ERSD | Mg2790
ppm
10.313
.002
.02332 | Mn2576
ppm
1.0299
.0007
.06953 | Mo2020
ppm
1.0186
.0068
.66653 | Na3302
ppm
9.7442
.1376
1.4124 | N12316
ppm
1.0272
.0017
.16928 | Pb2203
1.0293
.0058
.56520 | Se1960
1.0365
.0080
.77316 | | 11 | 10.312 | 1.0304 | 1.0138 | 9.6469 | 1.0260 | 1.0252 | 1.0309 | | 12 | | 1.0294 | 1.0235 | 9.8415 | 1.0285 | 1.0334 | 1.0422 | | Errors | QC Pass | Yalua | 10.000 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Bange | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | lem
Inits
Woe
Spev
RSD | Sb2068
ppm
.97558
.00443
.45396 | Sn1899
ppm
1.0369
.0022
.21698 | Sr4215
ppm
1.0162
.0010
.09968 | Ti3349
ppm
1.0058
.0000 | T11908
ppm
1.0310
.0014
.13535 | V_2924
ppm
1.0201
.0002
.02101 | Zn2062
ppm
1.0684
.0003
.02357 | | 71. | .97245 | 1.0353 | 1.0169 | 1.0058 | 1.0300 | 1.0199 | 1.0685 | | 12. | .97872 | 1.0385 | 1.0154 | 1.0058 | 1.0320 | 1.0202 | 1.0682 | | Ærrors | QC Pass | Value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | Vange | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Mam'r | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | nalysis | Report | QC Stai | ndard | 07/27 | /00 02:00:4 | 49 PM | page 2 | |--------------------------|------------------|------------------|---|-------------------|-----------------------------|--------------|------------------------| | mits
Avge | ppm
1.0320 | ppm
1.0279 | ppm
1.0429 | ppm
1.0333 | ppm
1.0272 | | | | RSD | .0016
.15707 | .0079
.76976 | .0047
.44875 | . 0097
. 93662 | .0085
.82698 | | | | 1
12 | 1.0309
1.0332 | 1.0223
1.0335 | 1.0396
1.0462 | 1.0265
1.0402 | 1.0332
1.0212 | | | | Errors
Value
Range | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | IntStd
Mode | 1
Counts | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | Elem
Wavlen | Y
371.030 | 1000° 1000° | Note Water | A105 1105 | NO. 400- | 1000 1000 | **** | | Avge
SD e v | 9983
22.87463 | Mar Mar | MANY MANY | ngar saar | 100 000. | Mar sas- | 1004 1000
1004 1000 | | RSD | .2291307 | deservices | *************************************** | sees, sees, | 9190° 2010° | idan voin | ***** | | #2 | 9999
9967 | nous rens. | 1000° 1000° | **** | Man star- | State state. | mage steal. | Report Blank Sample 07/27/00 02:05:53 PM page 1 60102007 07/27/00 14:00:57 Sample Name: CCB1 Operator: GSP | 5.0
1 | NC Corr. | Factor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|--|---| | SAV
SASD | Ag3280
ppm
00043
.00023
53.962 | A13082
ppm
.02266
.00003
.10884 | As1890
ppm
.00298
.00159
53.508 | B_2496
ppm
.00142
.00029
20.642 | Ba4934
ppm
.00043
.0006
13.948 | Be3130
ppm
.00029
.0004
12.528 | Ca3179
ppm
.01482
.00053
3.5878 | | #1
#2 | 00060
00027 | .02268
.02265 | .00410
.00185 | .00163 | .00047 | .00032 | .01519 | | Errors | LC Pass | High | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00022 | .00043 | .00068 | 00009 | .01682 | .00762 | 01869 | | SDev | .00006 | .00050 | .00036 | .00019 | .00322 | .00043 | .00325 | | %RSD | 29.304 | 117.19 | 53.644 | 218.35 | 19.131 | 5.6588 | 17.404 | | #1 | .00026 | .00007 | .00042 | 00022 | .01 45 5 | .00793 | 01639 | | #2 | .00017 | .00078 | | .00005 | .01910 | .00732 | 02099 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | LC Pass | LC Pass | | High | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Low | 00500 | 01000 | 00500 | 01000 | | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.01224
.00076
6.2462 | Mn2576
ppm
.00044
.00002
5.2355 | Mo2020
ppm
.00084
.00017
19.999 | Na3302
ppm
.00967
.06813
704.32 | Ní2316
ppm
.00118
.00064
54.525 | Pb2203
.00004
.00005
100.34 | Se1960
00163
.00289
177.41 | | #1 | .01170 | .00046 | .00096 | 03850 | .00073 | .00008 | .00041 | | #2 | .01278 | .00043 | .00072 | .05785 | .00164 | | 00367 | | Errors | LC Pass | High | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00477 | .00075 | .00048 | .00075 | 00070 | .00018 | .00055 | | SDev | .00250 | .00098 | .00005 | .0003 | .00030 | .00000 | .00023 | | %RSD | 52.299 | 130.25 | 10.166 | 4.2457 | 43.416 | .47525 | 41.273 | | #1 | .00654 | .00006 | .00051 | .00077 | 00092 | .00018 | .00039 | | #2 | .00301 | | .00044 | .00073 | 00049 | .00019 | .00071 | | Errors | LC Pass | High | .05000 | .01000 | .00500 | .00500 | .01000 | .01000 | .02000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | Report | Blank (| Sample | 07/27 | /00 02:05:53 | PM | page 2 | |-----|----------|---------|-----------|-----------|----------------------------|------------|---------| | | ppm | maga | ppm | mag | ppm | | | | | 00081 | .00047 | 00033 | 00228 | .00037 | | | | N. | .00039 | .00026 | .00298 | .00285 | .00004 | | ** | | FØ) | 47.905 | 55.295 | 916.14 | 124.76 | 11.795 | | | | | | | | | | | | | | 00109 | .00066 | .00178 | 00027 | .00040 | | . H | | | 00054 | .00029 | 00243 | 00429 | .00034 | | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | | | 2 | .3 | 4 | 5 | | - | | | Counts | NOTUSED | NOTUSED | NOTUSED | | NOTUSED | NOTUSED | | | Y | | | | | | | | | 371.030 | **** | *** | | nup sys | | | | | 9868 | | **** | war ton | ···· | | | | | 13.91288 | **** | inan ma | 100F 111F | war war | | | | | .1409884 | *** | , | uu. | State State | Miles Mary | | | | 9858 | **** | Mane View | *** | 2
 | | | | 9030 | | | **** | | - | *** | 07/27/00 02:10:54 PM name 1 thod: 60102007 Sample Name: 007525-1 Operator: GSP In Time: 07/27/00 14:06:01 omment: ode: CONC Corr. Factor: 1 Elem Ag3280 A13082 As1890 B_2496 Ba4934 Be3130 Ca3179 Units ppm mag mag mag mag ppm ppm Avge SDev .00111 1.6187 .00513 .06874 .02333 .00027 133.81 .00014 .0428 .00103 .00101 .00054 .00007 2.51 12.818 2.6451 20.039 1.4710 2.3253 26.092 1.8729 .00122 1.6489 .00440 .06945 .02371 .00031 135.58 .00101 1.5884 .00585 .06802 .02295 .00022 132.03 rrors LC Pass ji gh⊱ 10.000 500.00 50,000 50,000 25.000 10.000 500.00 -.00500 -.10000 -.00500 -.10000 -.01000 -.00300 -.50000 lem Cd2265 Co2286 Cr2677 Cu3247 Fe2714 Fe2599 K_7664 ini ts ppm mag maq mag mag mag ppm .00062 .00560 .00940 .09583 L3.0407 3.1001 9.4761 .00016 .00017 .00017 .00264 .0575 .0610 .1660 25.215 2.9560 1.7768 2.7544 1.8903 1.9682 1.7518 .00073 .00572 .00951 .09770 L3.0814 9.5934 3.1433 .00051 .00548 .00928 .09396 L3.0001 3.0570 9.3587 LC Pass LC Pass LC Pass LC Pass LC LOW LC Pass LC Pass 40.000 20.000 20.000 100.00 100.00 500.00 50.000 -.00500 -.01000 -.00500 -.01000 40.000 -.10000 -1.0000 Ma2790 Mn2576 Mo2020 Na3302 Ni2316 Pb2203 Se1960 DDM mag ppm ppm ppm 26.477 .06567 .00658 24.766 .00988 .00645 -.00083 .531 .00149 .00011 .345 .00024 .00050 .00133 2.0055 2.2675 1.7177 1.3916 2.4498 7.7002 160.34 26.852 .06673 .00666 25.010 .01006 .00680 -.00177 #2 26.101 .06462 .00650 24.522 .00971 .00610 .00011 LC Pass Errors LC Pass LC Pass LC Pass LC Pass LC Pass LC Pass 25.000 50.000 High 500.00 50.000 100.00 100.00 150.00 LOW -.50000 -.01000 -.01000 -1.0000 -.00500 -.00500 -.01000 Elem Sb2068 Sn1899 Sr4215 Ti3349 T11908 V_2924 Zn2062 Units mag ppm mag mag ppm mag mag .00506 Avge .00615 .00631 .12958 .02890 -.00983 .21951 SDev .00114 .00013 .00267 .00075 .00152 .00015 .00415 %RSD 18.486 2.1045 2.0617 2.5766 15.458 2.9339 1.8930 0#1 .00534 .00621 .13147 .02943 -.00876 .00495 .22245 #2 .00695 .00640 .12769 .02838 L-.01091 .00516 .21658 LC Pass . LC Pass Errors LC Pass LC Pass LC Pass LC Pass LC Pass High 50.000 20.000 10.000 20,000 20.000 50.000 100.00 LOW -.05000 -.01000 -.00500 -.00500 -.01000 -.01000 -.02000 2203/1 2203/2 1960/1 1960/2 Elem L16707 | Units
Avge
SDev
&RSD | ppm
.01048
.00161
15.367 | ppm
.00443
.00155
34.925 | ppm
01199
.00236
19.695 | ppm
.00474
.00082
17.294 | ppm
.05298
.00133
2.5053 | | | |-------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-------------|---------------------------------------| | #1
#2 | .00934 | .00553 | 01366
01032 | .00416
.00532 | .05392
.05204 | 1 | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | | *** | **** | , pur www | *** | **** | | Wavlen | 371.030 | *** | um var | ***** | 100 UIV | allow entre | - | | E tyge | 9645 | **** | With war | ,4000, \$1000, | **** | 3000 0000 | 1989 \$1004 | | Dev | 204.7392 | **** | 300F \$500 | March Adder | **** | | · · · · · · · · · · · · · · · · · · · | | RSD | 2.122650 | 500A* MANO | 1044 MIN | 1980 3880 | www. way. | 100° 100° | | | | 9501 | *** | *** *** | *** | West 1994 | - | 6400° 4650° | | 2 | 9790 | *** | **** ***** | MIN. 140. | **** | sales tales | | ethod: 60102007 Sample Name: 007543-3 un Time: 07/27/00 14:11:04 omment: ade: CONC Corr. Factor: 1 | | | | • | | | | | |---------------------------------------|---|---|--|---|--|-------------------------------------|-------------------------------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .00029 | .02842 | .00242 | 00011 | .00022 | .00003 | .08172 | | SDev | .00049 | .00263 | .00050 | .00103 | .00003 | .00002 | .00678 | | %RSD | 171.81 | 9.2570 | 20.716 | 904.88 | 13.877 | 65.661 | 8.2966 | | #1 | .00063 | .03028 | .00206 | 00084 | .00024 | .00005 | .08651 | | #2 | 00006 | .02656 | .00277 | .00061 | | .00002 | .07693 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00015 | 00041 | .00424 | .00086 | L.03978 | .02981 | .04056 | | SDev | .00025 | .00036 | .00009 | .00010 | .00261 | .00042 | .00017 | | %RSD | 165.07 | 86.244 | 2.1114 | 11.482 | 6.5555 | 1.4222 | .41522 | | #1 | 00003 | 00016 | .00431 | .00093 | L.03794 | .03011 | .04068 | | . #2 | .000 3 3 | 00067 | .00418 | .00079 | L.04162 | .02951 | .04044 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.02448
.00112
4.5900 | Mn2576
ppm
.00673
.00000
.02097 | Mo2020
ppm
00066
.00029
44.334 | Na3302
ppm
.40630
.12392
30.500 | Ni2316
ppm
00005
.00049
1083.8 | Pb2203
00015
.00070
457.45 | Se1960
00342
.00000
.04413 | |)1 | .02528 | .00673 | 00087 | . 49393 | .00030 | 00065 | 00342 | | 12 | .02369 | .00674 | 00045 | . 31868 | 00039 | .00034 | 00343 | | Errors | LC Pass | Dan | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | OW | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Dem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Inducts | ppm | Inducts | .00426 | 00032 | .00021 | .00029 | 00598 | .00028 | .01334 | | Inducts | .00219 | .00098 | .00003 | .00006 | .00058 | .00013 | .00009 | | Inducts | 51.375 | 304.14 | 13.033 | 20.370 | 9.7285 | 44.519 | .64993 | | 2 | .00271
.00581 | 00101
.00037 | .00023
.00019 | .00025
.00034 | 00557
00639 | .00037 | .01340
.01328 | | Errors
1gh | LC Pass
50.000
05000 | LC Pass
20.000
01000 | LC Pass
10.000
00500 | LC Pass
20.000
00500 | LC Pass
20.000
01000 | LC Pass
100.00
01000 | LC Pass
50.000
02000 | | Wen: | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | 07/ | 27 | /00 | 02: | 15 | :59 | PM | |-----|----|-----|-----|----|-----|----| | | | | | | | | | | ** | | | | | | | |-----------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------|--| | Tibus
G
S
Y
;SD | ppm
.00245
.00065
26.682 | ppm
00145
.00138
95.005 | ppm
01083
.00154
14.241 | ppm
.00027
.00077
281.69 | ppm
.00005
.00001
24.157 | | | | 1 | .00291 | 00243
00048 | 00974
01192 | 00027
.00082 | .00006
.00004 | | | | rrors
Igh
aw | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Υ | **** | ANA HER | nie we | *** | | **** | | Wavlen | 371.030 | ··· | 100 VIII | 100 VIII | 160F 900F | *** | war ster | | Avge | 9930 | 105A* 169F | was seen | **** | 1000° 2000° | **** | | | SDev | 30.09071 | ··· | sect section | Frânc Strong | WARF 1000' | THE THE | New state | | A RSD | .3030152 | | **** 1000 | WAY 9997 | stor Mar | war war | wer war | | #1 | 9909 | MAY 3447- | way per | *** | was war | *** | COLUMN DESIGNATION OF THE PERSON PERS | | * #2 | 9952 | 1000 TODA
 3384, 3486. | 1900 1900 | nor star. | w w | · · | Report 60102007 Sample Name: PBSPS145 07/27/00 14:16:08 CONC Corr. Factor: 1 | | NC Corr. | Factor:] | l. | | | | | |----------------|---|---|---|---|--|---|---| | | Ag3280
ppm
.00021
.00033
155.37 | A13082
ppm
.01748
.00158
9.0655 | As1890
ppm
.00144
.00275
191.28 | B_2496
ppm
.00081
.00070
86.057 | Ba4934
ppm
00003
.00003
98.756 | Be3130
ppm
.00005
.00002
46.490 | Ca3179
ppm
.02042
.00128
6.2705 | | | .00044 | .01860 | .00339 | .00131 | 00005 | .00007 | .02132 | |) 2 | 00002 | .01636 | 00051 | .00032 | 00001 | .00003 | .01951 | | Errors
High | LC Pass
.00500 | LC Pass
.10000 | LC Pass
.00500 | LC Pass
.10000 | LC Pass
.01000 | LC Pass | LC Pass
.50000 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem
Units | Cd2265 | Co2286
ppm | Cr2677
ppm | Cu3247
ppm | Fe2714 | Fe2599
ppm | K_7664
ppm | | Avge
SDev | .00037 | 00126
.00092 | .00035 | .00149 | .02204 | .00421 | .02993 | | %RSD | 11.063 | 72.782 | 121.64 | 33.905 | 69.265 | 1.8769 | 104.91 | | #1
#2 | .00034 | 00191
00061 | .00065
.00005 | .00185
.00113 | .01125
.03284 | .00416 | .05214 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | NOCHECK | LC Pass | LC Pass | | High
Low | .00500
00500 | .01000
01000 | .00500
00500 | .01000
01000 | | .10000
10000 | 1.0000
-1.0000 | | Elem
Units | Mg2790
ppm | Mn2576 | Mo2020
ppm | Na3302
ppm | Ní2316
ppm | Pb2203 | Se1960 | | Avge | .00025 | .00008 | 00086 | .13334 | 00281 | .00153 | 00275 | | SDe∨
%RSD | .00372
1497.3 | .00009
106.74 | .00001
.79540 | .05505
41.287 | .00043
15.388 | .00145
95.076 | .00099
35.899 | | #1
#2 | 00238
.00288 | .00002
.00015 | 00087
00086 | .17227
.09441 | 00312
00250 | .00256
.00050 | 0020 <i>6</i>
00345 | | Errors | LC Pass | High
Low | .50000
50000 | .01000
01000 | .01000
01000 | 1.0000
-1.0000 | .00500
00500 | .00500
00500 | .01000
01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units
Avge | ppm
.00810 | ррм
H.02845 | ppm
.0004 | ppm
.00012 | ppm
L01025 | ppm
.00042 | ppm
.00044 | | SDev
%RSD | .00122
15.037 | .00030
1.0451 | .00002
52.470 | .00006
46.224 | .00148
14.400 | .00045
106.56 | .00004
9.4727 | | #1
#2 | .00896
.00724 | H.02824
H.02866 | .00006 | .00008
.00016 | 00920
L01129 | .00074 | .00041 | | Errors | LC Pass | LC High | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | .05000 | .01000 | .00500 | .00500 | .01000 | .01000 | .02000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | | | | | | | | | | v. | | | | | | |----------|-------------------|---------|------------|------------|--|---------| | | PPM | ppm | ppm | ppm | ppm | | | | .00806 | 00173 | 02024 | . 00597 | .00006 | | | | .00425 | .00006 | .00274 | .00011 | .00005 | | | RBD : | 52.701 | 3.3789 | 13.544 | 1.9075 | 75.401 | | | | .01106 | 00169 | 01830 | .00605 | .00009 | | | 2 | .00506 | 00177 | 02218 | .00589 | .00003 | | | rrors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass | | | Majari - | | | | | .05000 | | | | | | | | 05000 | | | | . | 2 | 3 | | | | | | Counts | NOTUSED | | 4 | 5 | 7 | | | Countra | MOTOSED | NOTUSED | NOTUSED | NOTUSED NOTUSED | NOTUSED | | | | | *** **** | HORSE SAME | | (()) | | | 371.030 | *** | www entry | | | | | | 9684 | *** | **** | we we | the stee | | | | 59.6628 3 | ww ww | Motor sour | **** | ······································ | | | 443 | .61 608 80 | **** | 110-100- | unar abber | **** | | | | 9642 | ···· | **** | - | 1980 tite | | | | 9726 | *** | w. | ***** | | | Sthod: 60102007 Sample Name: LCSSPS145 Un Time: 07/27/00 14:21:11 Comment: Mode: CONC Corr. Factor: 1 | | | ractor, i | k | | | | | |--|---|---|---|--|---|--|---| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm mag | ppm | maq | maga | ppm | mag | ppm | | Avge | .76189 | 48.832 | . 80326 | 1.2888 | 1.5826 | .54878 | 18.274 | | SDev | .00237 | .094 | .00407 | .0001 | .0027 | .00169 | . 064 | | &RSD | .31122 | .19242 | .50643 | .00425 | .17200 | .30835 | . 34756 | | #1 | .76021 | 48.765 | .80038 | 1.2888 | 1.5807 | .54759 | 18.229 | | #2 | .76357 | 48.898 | .80613 | 1.2888 | 1.5845 | .54998 | 18.319 | | | | 101070 | | | 1.0040 | .04//0 | 10.017 | | Errors | LC Pass | digh | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Con. | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | mag | ppm | mag | ppm | ppm | ppm | | Ayge | 1.9610 | .75824 | .69858 | .94084 | 87.034 | H83.919 | 13.937 | | SDev | .0097 | .00197 | .00278 | . 00004 | . 288 | .273 | .002 | | RSD | .49401 | .25910 | .39837 | . 00406 | . 33094 | . 32535 | .01134 | | | 1.9542 | .75685 | .69661 | . 94086 | 86.831 | H83.726 | 13.936 | | #2 | 1.9679 | .75963 | .70055 | .94081 | 87.238 | H84.112 | 13.938 | | | | • | | | | | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC Hìgh | LC Pass | | at agh | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | M ON | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | Mg2790 | Mn2576 | Mo2020 | Na3302 | N12316 | Pb2203 | Se1960 | | | maqq | ppm | ppm | ppm | ppm | | | | | 11.773 | 1.6177 | .70467 | 2.9813 | 1.0502 | .58873 | . 59253 | | TABA ! | .027 | .0051 | .00313 | .0021 | .0055 | .00061 | .00288 | | 13.00 | .22876 | .31544 | .44397 | .07113 | .52810 | .10420 | . 48594 | | | 11.754 | 1.6141 | .70246 | 2.9828 | 1.0463 | . 58830 | . 59049 | | 12 | 11.793 | 1.6213 | .70689 | 2.9798 | 1.0542 | .58917 | . 59457 | | | | | | | | • | | | Errors | LC Pass | jigh | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | LOW | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | ijina ts | ppm | A | | | | | | | ~ 4 mg ~ ~ | | evge . | .23864 | .72746 | . 90803 | 2.9084 | .69694 | 1.1528 | .81758 | | SDev | .00213 | .00058 | .00135 | .0099 | .00283 | .0051 | .00213 | | | · · | | | | | | | | SDev
&RSD | .00213
.89427 | .00058
.07995 | .00135
.14833 | .0099
.34006 | .00283
.40598 | .0051
.44019 | .00213
.25995 | | SDev
&RSD
#1 | .00213
.89427
.23713 | .00058
.07995
.72787 | .00135
.14833
.90708 | .0099
.34006
2.9014 | .00283
.40598
.69894 | .0051
.44019
1.1492 | .00213
.25995
.81608 | | SDev
&RSD | .00213
.89427 | .00058
.07995 | .00135
.14833 | .0099
.34006 | .00283
.40598 | .0051
.44019 | .00213
.25995 | | SDav
%RSD
#1
#2
Errors | .00213
.89427
.23713
.24015 | .00058
.07995
.72787
.72705
LC Pass | .00135
.14833
.90708
.90898
LC Pass | .0099
.34006
2.9014
2.9154
LC Pass | .00283
.40598
.69894
.69494 | .0051
.44019
1.1492
1.1564
LC Pass | .00213
.25995
.81608
.81909 | | SDav
%RSD
#1
#2
Errors
High | .00213
.89427
.23713
.24015
LC Pass
50.000 | .00058
.07995
.72787
.72705
LC Pass
20.000 | .00135
.14833
.90708
.90898
LC Pass
10.000 | .0099
.34006
2.9014
2.9154
LC Pass
20.000 | .00283
.40598
.69894
.69494
LC Pass
20.000 | .0051
.44019
1.1492
1.1564
LC Pass
100.00 | .00213
.25995
.81608
.81909
LC Pass
50.000 | | SDav
%RSD
#1
#2
Errors | .00213
.89427
.23713
.24015 | .00058
.07995
.72787
.72705
LC Pass | .00135
.14833
.90708
.90898
LC Pass | .0099
.34006
2.9014
2.9154
LC Pass | .00283
.40598
.69894
.69494 | .0051
.44019
1.1492
1.1564
LC Pass | .00213
.25995
.81608
.81909 | | SDav
%RSD
#1
#2
Errors
High | .00213
.89427
.23713
.24015
LC Pass
50.000 | .00058
.07995
.72787
.72705
LC Pass
20.000 | .00135
.14833
.90708
.90898
LC Pass
10.000 | .0099
.34006
2.9014
2.9154
LC Pass
20.000 | .00283
.40598
.69894
.69494
LC Pass
20.000 | .0051
.44019
1.1492
1.1564
LC Pass
100.00 | .00213
.25995
.81608
.81909
LC Pass
50.000 | | Units
Avge
SDev
KRSD | ppm
.59946
.00339
.56596 | ppm
.58338
.00077
.13269 | ppm
.58151
.00953
1.6384 | ppm
.59803
.00044
.07 3 53 | ppm
.04855
.00013
.26173 | | | |-------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|-----------------------------------|--------------|-----------------------| | #1
#2 | .59706
.60186 | . 58393
. 58283 | . 57478
. 58825 | . 59834
. 59772 | .04864
.04846 | | | | Errors
High
Low | NOCHECK | NOCHECK |
NOCHECK | NOCHECK | NOCHECK | | | | IntStd
Mode
Elem | 1
Counts | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTU SE D | | Wavlen
Avge | 371.030
10245 | Name Adjust | 1000- 000- | 100° 000° | 1000 1000
1000 1000 | VIG. 1617 | | | SDev
&RSD | 19.47927
.1901403 | | war war | close tippe | ***** | Marco Marco | enter tales. | | #1 | 10258 | | esse same | Mak- Wad- | was war | | THE THE | | #2 | 10231 | *** **** | WAY 1997 | **** | *** | | **** | Time: 07/27/00 14:26:14 Operator: GSP pole: CONC Corr. Factor: 1 | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|--|--|--|--|---|--|--| | Units | ppm | Avge | 00008 | 66.507 | .01415 | .00458 | .08444 | .00089 | .46261 | | SDev | .00003 | 1.536 | .00032 | .00113 | .00219 | .00010 | .01091 | | %RSD | 36.898 | 2.3089 | 2.2259 | 24.611 | 2.5938 | 11.769 | 2.3577 | | #1 | 00010 | 67.593 | .01437 | .00538 | .08599 | .00096 | . 47032 | | #2 | 00006 | 65.421 | .01393 | .00379 | .08289 | .00081 | . 45490 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | .00034 | .00607 | .04723 | .02381 | L37.705 | 37.770 | .54394 | | SDev | .00010 | .00023 | .00156 | .00094 | .857 | .828 | .01867 | | %RSD | 28.170 | 3.7214 | 3.3056 | 3.9661 | 2.2719 | 2.1933 | 3.4317 | | #1 | .00040 | .00591 | .04833 | .02447 | L38.311 | 38.356 | .55714 | | #2 | | .00623 | .04612 | .02314 | L37.100 | 37.184 | .53074 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
SRSD | Mg2790
ppm
1.1054
.0272
2.4569 | Mn2576
ppm
.80798
.01773
2.1945 | Mo2020
ppm
.00135
.00082
60.755 | Na3302
ppm
.13635
.07522
55.165 | Ní2316
ppm
.01419
.00031
2.1616 | Pb2203
.02846
.00025
.89250 | Se1960
00171
.00289
169.38 | | #1 | 1.1246 | .82051 | .00193 | .18953 | .01440 | .02864 | 00375 | | #2 | 1.0862 | .79544 | .00077 | .08316 | .01397 | .02828 | .00034 | | Errors
High | LC Pass
500.00 | LC Pass
25.000 | LC Pass
50.000 | LC Pass | LC Pass | LC Pass | LC Pass | | | 50000 | 01000 | 01000 | -1.0000 | 100.00
00500 | 150.00
00500 | 50.000
01000 | | Flem
Units
Avge
SDev
ERSD | 50000
Sb2068
ppm
.01030
.00027
2.6088 | | | | | | | | Elem
Units
Avge
SDev | Sb2068
ppm
.01030
.00027 | 01000
Sn1899
ppm
.02516
.00021 | 01000
Sr4215
ppm
.00677
.00014 | -1.0000
Ti3349
ppm
.59235
.01373 | 00500
T11908
ppm
00753
.00134 | 00500
V_2924
ppm
.09357
.00266 | 01000
Zn2062
ppm
.04742
.00100 | | Elem
Units
Avge
SDev
ARSD | Sb2068
ppm
.01030
.00027
2.6088 | 01000
Sn1899
ppm
.02516
.00021
.82613 | 01000
Sr4215
ppm
.00677
.00014
2.0453 | -1.0000
Ti3349
ppm
.59235
.01373
2.3184 | 00500
T11908
ppm
00753
.00134
17.749 | 00500
V_2924
ppm
.09357
.00266
2.8436 | 01000
Zn2062
ppm
.04742
.00100
2.1083 | | 07 | /27/00 | 02:31 | * A9 | DM | |---------|--------|-------|------|----| | · • / / | /2//00 | UZISI | : 07 | | | | No. | | | | | | | |-------------|----------|------------|---------------------|-------------|---------------|-----------------|---------------------------------------| | | ppm | ppm | ppm | ppm | mag | | | | | .03170 | .02684 | 01759 | .00622 | .02166 | | | | | .00223 | .00073 | .00926 | .00029 | .00049 | | | | F SD | 7.0314 | 2.7266 | 52.647 | 4.6114 | 2.2718 | | | | | .03327 | .02632 | 02413 | .00642 | .02201 | | | | 1 42 | .03012 | .02736 | 01104 | .00602 | .02132 | | | | Errors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | High | | 1100112011 | HOOHLOK | HOOHLOK | HOUHLOK | | | | | | | | | | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Hode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | Y | ···· | **** | ellik kilm | none stare | | | | Maylen | 371.030 | | salar value | SAREN STEEN | MARIE ANDA- | Name and | *** | | Avge | 9861 | | 1907 1997 | 100° 1000° | **** | | | | SDev | 234.6883 | u | 4044, Ages, | sour sour | **** | | · · · · · · · · · · · · · · · · · · · | | KRED | 2.379853 | Many total | | **** **** | 444 514 | **** | **** | | #1 | 9696 | Mary 1950. | NAME AND ASSESSMENT | 990A- 10941 | regare supple | Appell property | | | 出つ | 10027 | | *** | 1100° 1100° | **** | | | 07/27/00 02.36.13 DM 60102007 Sample Name: 007543-1L Operator: GSP 07/27/00 14:31:18 ONC Corr. Factor: 1 | | NC COTT. | ractor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|---|---| |)
P | Ag3280
ppm
.00030
.00086
284.32 | A13082
ppm
14.359
.023
.16088 | As1890
ppm
.00283
.00021
7.5515 | B_2496
ppm
.00094
.00087
91.879 | Ba4934
ppm
.01765
.00007
.40503 | Be3130
ppm
.00023
.00001
3.9736 | Ca3179
ppm
.11911
.00016
.13213 | | | .00091
00030 | 14.343
14.375 | .00268
.00298 | .00033 | .01770
.01759 | .00023 | .11923 | | ors | LC Pass
10.000
00500 | LC Pass
500.00
10000 | LC Pass
50.000
00500 | LC Pass
50.000
10000 | LC Pass
25.000
01000 | LC Pass
10.000
00300 | LC Pass
500.00
50000 | | lem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | hats | ppm | lyge | .00008 | .00104 | .01154 | .00446 | L8.0385 | 8.1689 | .13630 | | SDev | .00006 | .00052 | .00004 | .00000 | .0169 | .0091 | .01253 | | sRSD | 71.797 | 50.086 | .33199 | .02463 | .21029 | .11085 | 9.1963 | | #1 | .00004 | .00140 | .01157 | .00446 | L8.0505 | 8.1753 | .14517 | | #2 | | .00067 | .01151 | .00446 | L8.0266 | 8.1625 | .12744 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Low | LC Pass | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.24562
.00070
.28542 | Mn2576
ppm
.17126
.00012
.07041 | Mo2020
ppm
.00003
.00014
474.58 | Na3302
ppm
.12772
.08320
65.137 | Ní2316
ppm
.00396
.0005
1.2718 | .00621
.00016
2.6098 | Se1960
00150
.00123
82.027 | | #1 | .24612 | .17135 | 00007 | .06889 | .00400 | .00633 | 00238 | | #2 | .24513 | | .00013 | .18655 | .00392 | .00610 | 00063 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .00257 | .00764 | .00145 | .12351 | 00370 | .01940 | .01105 | | SDev | .00090 | .00078 | .00000 | .00080 | .00227 | .00013 | .00001 | | %RSD | 35.214 | 10.279 | .05046 | .64582 | 61.493 | .68173 | .05379 | | #1
#2 | .00321 | .00819 | .00145
.00145 | .12295
.12407 | 00530
00209 | .01949
.01930 | .01106 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | nits | ppm | ppm | ppm | mqq | ppm | | |-------|------------------|---------|-----------|----------
--|---------| | lvge | .00949 | .00458 | 00206 | 00122 | .00462 | | | SDev | .00294 | .00171 | .00389 | .00009 | .00007 | | | RSD | 30.935 | 37.339 | 188.56 | 7.6086 | 1.4947 | | | | .00741 | .00578 | 00482 | 00116 | .00467 | | | 2 | .01157 | .00337 | .00069 | 00129 | .00457 | | | rrors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | gépi- | | | | | | | | | | | | | | | | 300 | . 1 | 2 | 3 | 4 | 5 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED NOTUSED | NOTUSED | | | Y | | | ···· | Many water | | | 7.5 | 4371.03 0 | | | *** | •••••••••••••••••••••••••••••••••••••• | | | | -1000B | *** | WWW 1884* | **** | Note that | | | | 34.19386 | | *** | **** | | | | | 3446732 | *** | 100 400 | **** | Mark Mark | | | | 10032 | | **** | mar have | NAME AND ADDRESS OF THE PARTY T | *** | | | 000 | | | | | | Method: 60102007 Sample Name: 007543-18 Run Time: 07/27/00 14:36:21 | Run Time: 07/27/00 | | | Sample Name: 00/543-15
14:36:21 | | | Uperator: GSP | | | | |--------------------|------------------|-----------------|------------------------------------|-----------------|------------------|-----------------|----------------|--|--| | Comment: | , , | | | | | | | | | | 1ode: CC | NC Corr. | Factor: | l | | | | | | | | Elem | Ag3280 | A13082 | As1890 | 8_2496 | Ba4934 | B e 3130 | Ca3179 | | | | Units | ppm | ppm | - ppm | ppm | ppm | ppm | ppm | | | | Avge | .50246 | 88.761 | .95429 | . 91356 | 1.0959 | . 49876 | 10.409 | | | | SDev | .00041 | .004 | .00012 | .00053 | .0021 | .00026 | .016 | | | | %RSD | .08099 | .00477 | .01239 | .05817 | .19510 | .05291 | .15138 | | | | #1 | .50274 | 88.758 | .95421 | .91319 | 1.0974 | . 49858 | 10.398 | | | | ‡2 | .50217 | 88.764 | . 95438 | .91394 | 1.0944 | .49895 | 10.420 | | | | Errors | LC Pass | | | Hígh | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | | | LOW . | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | | Elen | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | | | Ini ts | ppm | ppm | mad | ppm | ppm | ppm | ppm | | | | lyge | .49786 | 1.0142 | 1.0740 | 1.0313 | 48.257 | H47.842 | 10.535 | | | | SDev
KOSO | .00044 | .0013 | .0000 | .0019 | .001 | .002 | .033 | | | | krsd | .08783 | .12365 | .00268 | . 18052 | .00178 | .00421 | .31 547 | | | | # 1 | .49817 | 1.0133 | 1.0740 | 1.0326 | 48.257 | H47.841 | 10.558 | | | | 12 , , | .49756 | 1.0151 | 1.0740 | 1.0300 | 48.258 | H47.844 | 10.511 | | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC High | LC Pass | | | | High: | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | | | OW : | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | | lem: | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | | | Vets | ppm | ppm | ppm | ppm | ppm | | 05770 | | | | yge / | | 1.8252 | 1.0173 | 9.6133 | 1.0125 | 1.0171 | .85730 | | | | | .005 | .0003 | .0002 | .0419 | .0013 | .0027 | .00479 | | | | RED: | .04721 | .01478 | .02027 | . 43537 | .12656 | .26990 | . 55891 | | | | #1 | 11.543 | 1.8254 | 1.0171 | 9.6429 | 1.0116 | 1.0151 | .86069 | | | | 2 | 11.551 | 1.8250 | 1.0174 | 9.5837 | 1.0134 | 1.0190 | .85391 | | | | Errors | | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | | | | High 😲 | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | | | BOW . | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | Tl1908 | V_2924 | Zn2062 | | | | Units : | ppm | | | ivge ; | .70783 | 1.0422 | 1.0040 | 1.5861 | . 96865 | 1.1034 | 1.0730 | | | | SDEV
RSD | .00110
.15555 | .0021
.19734 | .0016
.15932 | .0003
.01702 | .00069
.07086 | .0017
.15027 | .09543 | | | | 100L | . 13333 | .17/04 | | .01/02 | .07000 | . 10027 | .02040 | | | | #1 | . 70861 | 1.0436 | 1.0052 | 1.5860 | .96913 | 1.1022 | 1.0723 | | | | #2 | 70705 | 1.0407 | 1.0029 | 1.5863 | .96816 | 1.1046 | 1.0737 | | | | Errors | LC Pass | | | | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | | Sections . | | | | | | | | | | | Units | ppm | maga | ppm | ppm | ppm | | | |------------------------|----------|-------------|---|------------|-------------|----------------|--------------| | Avge | 1.0298 | 1.0107 | . 85074 | .86058 | 1.0210 | | | | Units
Avge
SDev | .0091 | .0087 | .01284 | .00077 | .0012 | | | | % RSD | .88571 | .85773 | 1.5098 | . 08963 | .11968 | | | | * #1 | 1.0362 | 1.0046 | . 85982 | .86112 | 1.0219 | | | | #2 | 1.0233 | 1.0169 | .84166 | .86003 | 1.0202 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Flem | Y | | *************************************** | | | | | | Wavlen
Avge
SDev | 371.030 | ecos, such | **** **** | Mar. 1845. | *** | Nation Assess | COMMIT COSCO | | Avge | 9529 | *** | com see | 190° MIN | **** | | **** | | SDev | 37.35375 | pater apper | **** | | May bear | *** | tener 1000° | | *RSD | .3920077 | **** | was view | *** | **** **** | ***** | VIII 1410 | | | 9502 | www | dager voter | 9960 9660° | 90001 90001 | Money selector | 5000° 1000° | | #2 | 9555 | - | **** | ***** | **** | | ···· | **60102007** Sample Name: 007543-1SD Operator: GSP me: 07/27/00 14:41:25 ent: :- CONC Corr. Factor: 1 | | | 1 4000 | | | | | | |---------------------------------------|---|--|--|--|--|---|--| | lem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Avge | .50305 | 93.158 | .94693 | .91 549 | 1.1058 | .49690 | 10.324 | | SDev | .00018 | .024 | .00614 | .00077 | .0012 | .00427 | .106 | | %RSD | .03515 | .02548 | .64884 | .08402 | .10607 | .85861 | 1.0283 | | #1 | .50317 | 93.141 | .94258 | .91604 | 1.1066 | .49388 | 10.249 | | #2 | .50292 | 93.174 | .95127 | .91495 | 1.1050 | .49991 | 10.399 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | Elem
Units
Avge
SDev
%RSD | Cd2265
ppm
.49249
.00461
.93630 | Co2286
ppm
1.0077
.0081
.80149 | Cr2677
ppm
1.0751
.0089
.82961 | Cu3247
ppm
1.0419
.0026
.24833 | Fe2714
ppm
49.975
.390 | Fe2599
ppm
H49.596
.319
.64260 | K_7664
ppm
10.679
.059 | | #1 | .48923 | 1.0020 | 1.0688 | 1.0437 | 49.699 | H49.371 | 10.721 | | #2 | .49575 | 1.0134 | 1.0814 | 1.0401 | 50.251 | H49.821 | 10.638 | | Errors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC High | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | Elem
Units
Avge
SDev
&RSD | Mg2790
ppm
11.537
.090
.77789
11.473
11.600 | Mn2576
ppm
1.8588
.0128
.68637
1.8497
1.8678 | Mo2020
ppm
1.0142
.0071
.69608
1.0092
1.0192 | Na3302
ppm
9.4840
.0823
.86737
9.5422
9.4258 | Ní2316
ppm
1.0101
.0093
.91583
1.0036
1.0167 | Pb2203
1.0075
.0067
.66934
1.0027
1.0123 | Se1960
.84763
.00981
1.1573
.84069
.85456 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low
 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .69650 | 1.0342 | 1.0116 | 1.6087 | .96740 | 1.1074 | 1.0584 | | SDev | .00631 | .0116 | .0001 | .0074 | .00884 | .0053 | .0155 | | %RSD | .90590 | 1.1222 | .01117 | .46232 | .91324 | .48233 | 1.4656 | | Avge
SDev | .69650
.00631 | 1.0342
.0116 | ppm
1.0116
.0001 | 1.6087
.0074 | ppm
.96740
.00884 | ppm
1.1074
.0053 | 1.0584 | | Avge
SDev
%RSD | .69650
.00631
.90590 | 1.0342
.0116
1.1222
1.0260 | ppm
1.0116
.0001
.01117 | 1.6087
.0074
.46232
1.6035 | ppm
.96740
.00884
.91324 | ppm
1.1074
.0053
.48233 | 1.0584
.0155
1.4656 | | ts
vee
Pev
RSD | ppm
1.0207
.0046
.45166 | ppm
1.0009
.0078
.78016 | ppm
.83543
.00605
.72429 | ppm
.85371
.01169
1.3689 | ppm
1.0379
.0085
.81628 | | | |-------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--|---------------------------------------|--------------| | 11
#2 | 1.0175
1.0240 | .99539
1.0064 | .83116
.83971 | .84545
.86198 | 1.0439
1.0319 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | IntStd | 1 | 2 | 3 | d | سر | , | | | Mode | Counts | NOTUSED | NOTUSED | 4
NOTUSED | 5
NOTUSED | 6 | 7 | | Elem | Y | NOTOSED | NOTOSED | MOTOSED | NOTOSED | NOTUSED | NOTUSED | | Waylen | 371.030 | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | *** | | Avge | 9607 | | | | 100.000 | ••• | and ethi | | SDev | 63.71902 | | | | **** | **** | **** | | %RSD | .6632584 | 1997 1897 | *** | | | 400 400 · | other there. | | #1 | 9562 | that bear | vote state | W10" 161" | **** | · · · · · · · · · · · · · · · · · · · | war wat | | #2 | 9652 | · · · · · · | 9664 MAR | 19991 30001 | 1415° 6250° | **** | **** | Operator: GSP **60102007** Sample Name: 007543-1A 07/27/00 14:46:28 CONC Corr. Factor: 1 | len:
Nits | Ag3280
ppm
.46938 | A13082
ppm
77.458 | As1890
ppm
.93641 | B_2496
ppm
.89562 | Ba4934
ppm
1.0527 | Be3130
ppm
.48343 | Ca3179
ppm
10.147 | |----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | 30 V | .00103 | .084 | .00225 | .00103 | .0014 | .00068 | .019 | | 35D | .22050 | .10869 | .24015 | .11524 | .12859 | .14169 | .18690 | | | .46865 | 77.398 | . 93482 | . 89635 | 1.0517 | .48294 | 10.133 | | | .47011 | 77.518 | . 93800 | . 89489 | 1.0536 | .48391 | 10.160 | | P) 5 | LC Pass | - 3 9 | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | - 30 | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | inits | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Nits | ppm | Nge | .48331 | .98520 | 1.0410 | 1.0028 | 48.073 | H47.740 | 9.8367 | | SDev | .00103 | .00014 | .0038 | .0003 | .111 | .116 | .0107 | | RSD | .21305 | .01409 | .36812 | .02880 | .23155 | .24314 | .10827 | | 1 | .48258 | .98510 | 1.0383 | 1.0030 | 47.994 | H47.658 | 9.8443 | | 2 | .48404 | .98530 | 1.0437 | 1.0025 | 48.151 | H47.822 | 9.82 9 2 | | Errons | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC High | LC Pass | | Ligh | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | OW | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | len
snits
lyge | Mg2790
ppm
10.677 | Mn2576
ppm
1.7962 | Mo2020
ppm
.99364 | Na3302
ppm
9.1614 | Ni2316
ppm
.97291 | Pb2203 | Se1960
.81748 | | SDBV
&RSD | .011 | .0041 | .00328
.33017 | .0659
.71879 | .00131 | .00038 | .00209
.25513 | | #1 | 10.670 | 1.7934 | .99132 | 9.2080 | .97384 | .97845 | .81895 | | #2 | | 1.7991 | .99596 | 9.1148 | .97198 | .97899 | .81600 | | Errors | LC Pass | High | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .90861 | 1.0174 | .97511 | 1.5816 | .93851 | 1.0708 | 1.0290 | | SDev | .00256 | .0001 | .00198 | .0036 | .00643 | .0015 | .0005 | | %RSD | .28213 | .00593 | .20284 | .22755 | .68456 | .14259 | .05261 | | #1 | .90680 | 1.0174 | . 97371 | 1.5790 | .93397 | 1.0697 | 1.0286 | | #2 | .91042 | 1.0174 | . 97651 | 1.5841 | .94305 | 1.0719 | 1.0294 | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | 66 °S' | | | | | | | | | Ø. | | | | | | | | |--------------|----------|--------------|----------------------|-------------|-------------|-------------|---------| | Units | ppm | mag | ppm | ppm | ppm | | | | Avge | . 99479 | . 97070 | .80472 | .82385 | . 98449 | | | | SDev | .00382 | .00248 | .00631 | .00002 | .00095 | | | | RSD | .38414 | . 25521 | . 78385 | .00270 | .09676 | | | | 91 | .99749 | . 96895 | .80918 | . 82383 | . 98516 | | | | 2 | .99208 | . 97245 | .80026 | .82387 | . 98381 | | | | ntors | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | | dich :
Or | | | | | | | | | E Sta | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | | Ϋ́ | **** | THE MIT | | Same Same | | | | | 371.030 | *** | 16.10° 10.00° | *** | sace sace | \$000- base | | | | 9612 | | *** | ilm lim | 10551 10641 | Man com | *** | | | 41.64610 | | **** | Marie Pince | Mar Mar | Same Same | | | | .4332613 | 1000 1500 | was tope | *** | | WIV WW | | | | 9583 | quade trajec | 224. 220. | NESS SEAS | **** | | **** | | | 9642 | ···· | we we | | | | , | Operator: GSP **Method: 60102007** Sample Name: 007543-2 Run Time: 07/27/00 14:51:32 Comment: Hode: CONC Corr. Factor: 1 | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |----------------|-----------------|---------------|---------------|---------------|--------------|---------|---------------| | Units | ppm | Avge | .00002 | 69.840 | .01431 | .00328 | .08749 | .00097 | . 42698 | | SDev | .00012 | . 166 | .00017 | .00148 | .00019 | .00002 | .00001 | | %RSD | 565.26 | . 23774 | 1.2179 | 45.220 | .21348 | 2.2574 | .00330 | | | 00010 | /O 707 | 01444 | 00007 | 0.077 | | | | #1
#2 | .00010
00006 | 69.723 | .01444 | .00223 | .08736 | .00098 | . 42697 | | #2 | 00006 | 69.958 | .01419 | .00433 | . 08763 | .00095 | . 42699 | | Errors | LC Pass | High | 10.000 | 500.00 | 50.000 | 50.000 | 25.000 | 10.000 | 500.00 | | Low | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | | | | | .02000 | | .5000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | Avge | - 00005 | .00689 | .04925 | . 02566 | 40.139 | H40.044 | . 55853 | | SDev | .00014 | .00051 | . 00046 | .00020 | .116 | .123 | .01467 | | RSD: | 257.97 | 7.3353 | .94021 | .78710 | .28831 | . 30794 | 2.6266 | | | .00015 | .00653 | .04958 | .02581 | 40.057 | 39.957 | . 56890 | | | 00013 | .00533 | .04938 | .02552 | 40.037 | H40.132 | | | | .00004 | .00724 | .04072 | .02332 | 40.221 | N40.132 | .54816 | | Enrors | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC High | LC Pass | | High | 20.000 | 20.000 | 100.00 | 100.00 | 500.00 | 40.000 | 50.000 | | Low | 00500 | 01000 | 00500 | 01000 | 40.000 | 10000 | -1.0000 | | | | | | | | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | Units: | ppm | ppm | ppm | ppm | bbw | | | | a vde | 1.1498 | .86074 | .00243 | .24317 | .01560 | .02763 | 00271 | | Spev | .0014
.11836 | .00250 | .00095 | .10665 | .00098 | .00038 | .00046 | | RSD | .11000 | .29101 | 39.094 | 43.857 | 6.2549 | 1.3911 | 17.102 | | | 1.1489 | .85897 | .00310 | . 31858 | .01491 | .02790 | 00303 | | 5 12 | 1.1508 | .86251 | .00176 | . 16776 | .01629 | .02735 | 00238 | | | | | | | | | | | Errors | | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | LC Pass | | H ugh k | 500.00 | 25.000 | 50.000 | 100.00 | 100.00 | 150.00 | 50.000 | | 500 | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | | Sb2068 | Sn1899 | Sr4215 | T: 7740 | T11000 | V 0004 | 7-0040 | | | | | | Ti3349 | T11908 | V_2924 | Zn2062 | | W THE | ppm
.00995 | ppm
.03041 | ppm
.00652 | ppm
.69064 | ppm
00548 | .09830 | ppm
.04807 | | E Dev | .00060 | .00023 | .00007 | .00084 | .00051 | .00088 | .00038 | | RSD. | 6.0825 | .76608 | 1.0759 | .12147 | 9.3893 | .89441 | .79630 | | | | -, | | 1 | , 100,0 | | | | N#1 2 | .00952 | .03058 | .00657 | . 69005 | 00511 | .09892 | .04779 | | 12 | .01038 | .03025 | .00647 | .69123 | 00584 | .09768 | .04834 | | | | | | | | | , | | Errors | LC Pass | High | 50.000 | 20.000 | 10.000 | 20.000 | 20.000 | 100.00 | 50.000 | | LOW | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | | 2200/1 | 2200/2 | 1/00/1 | 1900/2 | mre/0/ | | | | Units
Avge
SDev
ARSD | ppm
.03413
.00368
10.773 | ppm
.02438
.00126
5.1675 | ppm
01960
.00054
2.7318 | ppm
.00573
.00043
7.4398 | ppm
.02257
.00004
.19308 | | | |--|---|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------|--------------| | #1
#2 | .03673
.03153 | .02349
.02527 | 01998
01922 | .00543
.00603 | .02260
.02254 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | NOCHECK | | | |
IntStd
Mode
Elem
Wavlen
Avge
SDev
&RSD | 1
Counts
Y
371.030
9819
24.28884
.2473639 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | #1
#2 | 9802
9836 | 466F 466F | 1994 - 9984 - | and and | Many Sour | 2004 1015
1206 2015 | samp tada. | Report QC Standard 07/27/00 03:01:30 PM Operator: GSP 60102007 Sample Name: CCV1 34mple Na 37/27/00 14:56:35 Corr. Factor: 1 | em | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | |---------------------------------------|---|--|--|--|---|-------------------------------------|-------------------------------------| | Lucs | ppm | Voe | .50110 | 10.040 | 1.0174 | 1.0010 | 1.0022 | .52317 | 10.451 | | Oev | .00186 | .054 | .0042 | .0009 | .0047 | .00236 | .046 | | Red | .37099 | .53833 | .40842 | .08779 | .47330 | .45030 | .44222 | | #1 | .50241 | 10.078 | 1.0203 | 1.0017 | 1.0056 | .52484 | 10.483 | | #2 | .49978 | 10.002 | 1.0144 | 1.0004 | .99885 | .52150 | 10.418 | | Errors | QC Pass | Value | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | Cd2265 | Co2286 | Cr2677 ppm 1.0451 .0050 .47392 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | ppm | | ppm | ppm | ppm | ppm | | Avge | .52688 | 1.0405 | | .99138 | 10.374 | 10.415 | 9.8053 | | SDev | .00287 | .0042 | | .00743 | .034 | .042 | .0432 | | %RSD | .54423 | .40238 | | .74894 | .33041 | .40332 | .44019 | | #1 | .52891 | 1.0434 | 1.0486 | . 99663 | 10.398 | 10.445 | 9.8359 | | #2 | .52486 | 1.0375 | 1.0416 | . 98613 | 10.350 | 10.385 | 9.7748 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .50000 | 1.0000 | 1.0000 | 1.0000 | | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
10.363
.040
.38994 | Mn2576
ppm
1.0321
.0049
.47576 | Mo2020
ppm
1.0215
.0010
.10220 | Na3302
ppm
9.7190
.0582
.59853 | Ni 2316
ppm
1.0329
.0049
.47388 | Pb2203
1.0340
.0047
.45932 | Se1960
1.0349
.0051
.49438 | | #1 | 10.391 | 1.0355 | 1.0207 | 9.7601 | 1.0364 | 1.0373 | 1.0385 | | #2 | 10.334 | 1.0286 | 1.0222 | 9.6779 | 1.0295 | 1.0306 | 1.0312 | | Errors | QC Pass | Value | 10.000 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | Elem | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .96943 | 1.0415 | 1.0092 | 1.0021 | 1.0225 | 1.0195 | 1.0811 | | SDev | .00503 | .0013 | .0067 | .0047 | .0004 | .0049 | .0032 | | %RSD | .51899 | .12166 | .66665 | .46789 | .03610 | .47599 | .29701 | | #1 | .96587 | 1.0424 | 1.0139 | 1.0054 | 1.0222 | 1.0229 | 1.0834 | | #2 | .97299 | 1.0406 | | .99874 | 1.0228 | 1.0160 | 1.0788 | | Errors | QC Pass | Value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | 1em | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | | Report | Report QC Standard 07/27/0 | | /00 03:01: | 00 03:01:30 PM | | | |---|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|---| | | , ppm
1.0349
.0133
1.2870 | ppm
1.0335
.0005
.04551 | ppm
1.0453
.0060
.57703 | ppm
1.0296
.0047
.45249 | ppm
1.0285
.0078
.75818 | | | | | 1.0443
1.0255 | 1.0338
1.0331 | 1.0496
1.0410 | 1.0329
1.0263 | 1.0340 | | | | (401/S
48
48 | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | 280
20
20
20
20
20
20
20
20
20
20
20
20
20 | 1
Counts
Y
371.030
9980
61.59632 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED

 | 6
NOTUSED

 | 7
NOTUSED | | , GIP | 9936 | **** | 2000-1000- | 5000° 5000° | ****** | 000 100° | 5000 1001 · · · · · · · · · · · · · · · · | 10023 alysis Report Blank Sample 07/27/00 03:06:34 PM page 1 Operator: GSP od: 60102007 Sample Name: CCB1 Ment: | COI | NC Corr. | Factor: 1 | | | | | | |---------------------------------------|---|---|---|---|---|---|---| | Lem
ng Ls
Vice
Dev
RSD | Ag3280
ppm
.00112
.00006
5.0112 | A13082
ppm
.03188
.00030
.94530 | As1890
ppm
.00217
.00227
104.36 | B_2496
ppm
.00212
.00103
48.753 | Ba4934
ppm
.00069
.00004
6.2869 | Be3130
ppm
.00043
.00003
6.5224 | Ca3179
ppm
.01795
.00108
6.0183 | | 2 | .00108
.00116 | .03210
.03167 | .00377
.00057 | .00285
.00139 | .00066
.00072 | .00041 | .01718
.01871 | | egors
Sch | LC Pass
.00500 | LC Pass
.10000 | LC Pass
.00500 | LC Pass
.10000 | LC Pass
.01000 | LC Pass
.00300 | LC Pass
.50000 | | TE
Vge
SDev
RSD | Cd2265
ppm
.00046
.00026
56.812 | Co2286
ppm
.00092
.00003
3.1704 | Cr2677
ppm
.00101
.00016
15.562 | Cu3247
ppm
.00036
.00007
20.827 | Fe2714
ppm
.02589
.00745
28.762 | Fe2599
ppm
.01257
.00131
10.444 | K_7664
ppm
.00159
.02243
1414.0 | | 11
12 | .00028 | .00094
.00090 | .00112 | .00030
.00041 | .03115
.02062 | .01164
.01350 | 01427
.01745 | | irroms
Eigh
Sow | LC Pass
.00500
00500 | LC Pass
.01000
01000 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | NOCHECK | LC Pass
.10000
10000 | LC Pass
1.0000
-1.0000 | | lem
Sets
Yge
Dev | Mg2790
ppm
.01419
.00315 | Mn2576
ppm
.00077
.00004 | Mo2020
ppm
.00172
.00087 | Na3302
ppm
.14242
.03694 | Ni2316
ppm
.00223
.00139 | Pb2203
.00115
.00112 | Se1960
00149
.00204 | | RSD | 22.189 | 5.6320 | 50.885 | 25.939 | 62.206 | 97.662 | 137.17 | | #1
#2 | .01641 | .00074 | .00233
.00110 | .11630
.16854 | .00322
.00125 | .00194
.00036 | 00004
00293 | | Errors
High
Low | LC Pass
.50000
50000 | LC Pass
.01000
01000 | LC Pass
.01000
01000 | LC Pass
1.0000
-1.0000 | LC Pass
.00500
00500 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | | Elem
Units
Avge
SDev
KRSD | Sb2068
ppm
.00524
.00372
71.074 | Sn1899
ppm
.00302
.00077
25.414 | Sr4215
ppm
.00069
.00012
16.532 | Ti3349
ppm
.00107
.00009
8.1602 | T11908
ppm
00002
.00138
6364.6 | V_2924
ppm
.00125
.00037
29.755 | Zn2062
ppm
.00099
.00023
22.952 | | #1
#2 | .00787
.00261 | .00248
.00356 | .00061
.00077 | .00113 | 00100
.00095 | .00098 | .00115 | | Errors
High
Low | LC Pass
.05000
05000 | LC Pass
.01000
01000 | LC Pass
.00500
00500 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | LC Pass
.01000
01000 | LC Pass
.02000
02000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Lí6707 | | | | Analysis | Report | Blank S | Sample | 07/27, | /00 03:06: | 34 PM | page 2 | |-------------------------------|-----------------------------------|---|----------------------------------|----------------------------------|-----------------------------------|-------------|---------| | Units
Avge
SDev
%RSD | ppm
.00153
.00431
282.51 | ppm
.00096
.00384
399.60 | ppm
00088
.00070
80.202 | ppm
00179
.00341
190.21 | ppm
.00075
.00015
19.368 | | | | #1
#2 | 00152
.00458 | .00367
00175 | 00137
00038 | .00062
00420 | .00065 | | | | Errors
High
Low | NOCHECK | NOCHECK | NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | IntStd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | Mode | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | NOTUSED | | Elem | ³ . Y | *** | *** *** | | *** | *** | *** | | Wavlen | 371.030 | *** | nu mr | MIN MIP | **** | *** | ···· | | e voe | 9925 | www war | war war | New Year | **** | ner terr | we see | | SDev | 12.96961 | Nutr 1107 | **** | **** | same appear | | | | SRSD: | .1306815 | *************************************** | was some | 960° 666°. | tour war | actor south | | | 1 | 9915 | www.ww | WW 900 | we we | 1890 9440° | **** | | Analysis Report QC Standard 07/27/00 03:11:38 PM Operator: GSP page 1 Method: 60102007 Sample Name: CRI Run Time: 07/27/00 15:06:43 Comment: Mode: CONC Corr. Factor: 1 | * | | | | | | | |
--|--|-----------------|---------------|---------------|--------------|---------|---------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | mag | mag | maga | ppm | ppm | ppm | | Avge | .00490 | .12398 | .00741 | .09945 | .01060 | .00554 | 1.0751 | | SDev | .00010 | .00026 | .00283 | .00071 | . 00004 | .00005 | .0024 | | %RSD | 2.0916 | .20550 | 38.131 | .70959 | .39572 | .83877 | ,22044 | | A., | 2.0710 | . 20000 | ~~~~~ | . / () / | | . 60677 | . 22044 | | #1 | .00497 | .12380 | .00541 | .09994 | .01057 | .00551 | 1.0735 | | #2 | .00483 | .12416 | Q.00941 | .09895 | .01063 | .00557 | 1.0768 | | | .00400 | - 12410 | W.00941 | . 0 > 0 > 0 | .01063 | .00337 | 1.0766 | | Errors | QC Pass | Value | .00500 | .10000 | .00500 | .10000 | .01000 | .00500 | 1.0000 | | Range | 50.000 | 50,000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | valida | 50.000 | 30.000 | 30.000 | 50.000 | 30.000 | 30.000 | 30.000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | CAREOO | V 7661 | | Units | | | | | | Fe2599 | K_7664 | | Avge | ppm
.00555 | ppm
.01116 | ppm
.00652 | ppm
.00944 | ppm
12804 | ppm | ppm
.94082 | | SDev | .00004 | .00028 | | | .12894 | .11460 | | | | | | .00007 | .00021 | .00398 | .00062 | .00064 | | * RSD | .70321 | 2.4626 | 1.0360 | 2.2728 | 3.0854 | .54412 | .06786 | | | | 01007 | 00/100 | | 4 4 | * 1 . 1 | ~ | | #1 | .00552 | .01097 | .00647 | .00929 | .12612 | .11416 | . 94037 | | #2 | .00558 | .01136 | .00656 | .00960 | .13175 | .11504 | .94128 | | M Ž | | | | | | | | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | Value | .00500 | .01000 | .00500 | .01000 | | .10000 | 1.0000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | | 50.000 | 50.000 | | | 4 <u></u> | | | | | | | | Flem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ni 2316 | Pb2203 | Se1960 | | Units | (ppm | ppm | ppm | ppm | ppm | | | | Ayge | .52301 | .01096 | .01145 | . 91427 | .00712 | .00501 | .00977 | | SDev | .00082 | .00003 | .00001 | .01060 | .00007 | .00153 | .00238 | | RSD | .15692 | .25795 | .11194 | 1.1592 | 1.0015 | 30.584 | 24.343 | | | | | | | | | | | B #1 | . 52243 | .01094 | .01146 | .92176 | .00717 | .00393 | .00809 | | | .52359 | .01098 | .01144 | . 90678 | .00707 | .00610 | .01145 | | | ()
10 | | | | | | | | Errors | QC Pass | W alue | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | | 80 <u>2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u> | | | | | | | | Elem. | Sb2068 | Sn1899 | Sr4215 | T13349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | .05341 | .00732 | .00544 | .00560 | .00940 | .01062 | .02263 | | SDev | .00011 | .00227 | .00002 | .00013 | .00030 | ,00003 | .00033 | | ARSD. | .19742 | 30.966 | .42040 | 2.3934 | 3.2157 | . 26884 | 1.4549 | | | v"
() | | _ | | | | 1 | | 1 | . 05334 | .00572 | .00542 | .00550 | .00918 | .01060 | .02239 | | #2 | .05349 | Q. 00893 | .00545 | . 00569 | .00961 | .01064 | .02286 | | | , | | | | | | | | Errors | QC Pass | Value | .05000 | .00500 | .00500 | .00500 | .01000 | .01000 | .02000 | | Range | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | 50.000 | | | | | | | | | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | を表現を見る。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年でありた。
1000年であ | | | | | | | | | halysis | Report | QC Sta | ndard | 07/27 | /00 03:11:3 | 38 PM | page 2 | |--|---|-----------------------------------|-------------------------|-----------------------------------|-----------------------------------|--------------|--| | Units
Avge
SDEV
SARSD | ppm
.00372
.00069
18.535 | ppm
.00566
.00196
34.532 | ppm
.00961
.00098 | ppm
.00985
.00308
31.256 | ppm
.05118
.00004
.07882 | | | | #1
#2 | .00323 | .00428 | .00892 | .00767
.01202 | .05121 | | | | Errors
Value
Range | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass
.05000
50.000 | | | | IntStd
Mode
Elem
Wavlen
Avge
SDev
%RSD | 1
Counts
Y
371.030
9956
25.37436
.2548554 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | #1
#2 | 9974
9938 | con our | 1001 Mar. | **** | coop space | **** | ************************************** | Report QC Standard 07/27/00 03:16:42 PM Operator: GSP page 1 60102007 Sample Name: ICSA : 07/27/00 15:11:47 ONC Corr. Factor: 1 | 10.5 | | ractor. 1 | | | | | | |-----------------|-------------------|--------------------|-------------------|-------------------------|------------------|------------------|-----------------| | | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Bindte | ppm | mag | mag | mag | mad | DEDIO | ppm | | Mayes | .00016 | 520.71 | ,00207 | .00502 | .00119 | .00125 | 456.28 | | SDev | .00032 | 2.24 | .00256 | .00028 | .00003 | .00000 | 1.73 | | RSD | 199.58 | 42934 | 124.13 | 5.6178 | 2.6941 | .32581 | .37922 | | | | | | | | | 2 W / / 2 m 2 m | | #1 | .00039 | 519.13 | .00025 |
.00522 | .00116 | .00125 | 455.06 | | 2 | 00007 | 522.29 | .00388 | .00482 | .00121 | .00124 | 457.50 | | | | | | | | | | | Errors | QC Pass | Value | .00000 | 500.00 | .00000 | .00000 | .00000 | .00000 | 500.00 | | Range | .01000 | 100.00 | .01000 | .20000 | .02000 | .00600 | 100.00 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | V 744A | | Units | ppm | ppm | mag | ppm | ppm
rez/14 | ppm | K_7664 | | Avge | 00051 | .00132 | .00076 | 00081 | 202.00 | 180.96 | ppm
02678 | | SDev | .00041 | .00033 | .00006 | .00036 | .81 | .57 | .01584 | | %RSD | 79.586 | 25.122 | 7.4706 | 44.622 | . 40264 | .31691 | 59.170 | | | | | | | | | | | #1 | 00022 | .00109 | .00080 | 00056 | 201.43 | 180.56 | 01557 | | #2 | 00080 | .00156 | .00072 | 00107 | 202.58 | 181.37 | 03798 | | Ennana | 00 0 | 00 0 | 00 0 | ma n | 00 8 | NOOLIEGE | ~~ ~ | | Errors
Value | QC Pass
.00000 | QC Pass
.00000 | QC Pass
.00000 | QC Pass | QC Pass | NOCHECK | QC Pass | | Range | .00000 | .02000 | .00000 | .00000
.02000 | 200.00
40.000 | | .00000 | | , nanye | .01000 | . 02000 | .01000 | . 02000 | 40.000 | | 2.0000 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | Ní2316 | Pb2203 | Se1960 | | Units | ppm | mag | ppm | ppm | ppm | | | | Avge | 561.78 | .00927 | 00068 | .03611 | .00026 | .00517 | 00315 | | SDev | 2.46 | .00000 | .00155 | . 00494 | .00076 | .00123 | .00037 | | % RSD | . 43749 | .01716 | 226.81 | 13.675 | 296.04 | 23.790 | 11.585 | | #1 | 560.04 | . 00928 | 00178 | .03262 | 00028 | 00604 | - 00000 | | #2 | 563.52 | .00928 | .000178 | .03262 | .00080 | .00604
.00430 | 00290
00341 | | | <u>-</u> | . ~ ~ / / | , www.m.r. | | . 00000 | . 00400 | | | Errors | QC Pass | Value | 500.00 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | | Range | 100.00 | .02000 | .02000 | 2.0000 | .01000 | .01000 | .02000 | | . | 050040 | 0-1000 | 04015 | T / T T / T | ~~ 1 4 m m m | | w | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units
Avge | .00593 | ppm
.00416 | ppm
00541 | ppm
00151 | ррm
.01918 | ppm
00071 | ppm
.00400 | | SDev | .00393 | .00416 | .00002 | .00004 | .00743 | .00071 | .00400 | | %RSD | 19.673 | 99.470 | .33315 | 2.4306 | 38.746 | 32.407 | 5.3716 | | | | | | and it is not the time. | we we a r "T we | | ~ " ~ " | | #1 | .00511 | .00709 | 00540 | 00148 | Q.02443 | 00055 | .00385 | | #2 | .00676 | .00124 | 00542 | 00154 | .01392 | 00087 | .00415 | | | | | | | | | | | Errors | QC Pass | Value
Papas | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | | Range | .10000 | .02000 | .01000 | .01000 | .02000 | .02000 | .04000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | M | / * | and the set of the | m / www/ de | / W V / Su | | | | | | 20 | | | | | | | | | | | |------------|----------|---------------|--------------------|-------------|-------------|---------------------------------------|--|--|--|--|--| | | Report | QC Sta | nd ard | 07/27 | /00 03:16:4 | 2 PM | page 2 | | | | | | | | | | | | | | | | | | | Heres: | ppm | ppm | mag | ppm | ppm | | | | | | | | | .01327 | .00113 | .00444 | 00695 | .00023 | | | | | | | | | .00086 | .00141 | .00336 | .00222 | .00003 | | | | | | | | 930 | 6.5212 | 124.82 | 75.59 6 | 32.026 | 11.880 | | | | | | | | di i | .01388 | .00213 | .00207 | 00537 | .00025 | | | | | | | | | .01265 | .00013 | .00682 | 00852 | .00021 | | | | | | | | | NOCHECK | NOCHECK | NOCHECK | NOCHECK | QC Pass | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | | | | | | .10000 | | | | | | | | | . 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | Counts | NOTUSED | NOTUSED | NOTUSED | NOTUSED 1 | NOTUSED | NOTUSED | | | | | | | , Y | **** | 1000- 1000 | **** | **** | | | | | | | | | 371.030 | **** | 9900° 3000° | **** | some south | sees who | | | | | | | | 8906 | **** | 1000° 1000° | som saler | was was | **** | | | | | | | | 6.838358 | | 1000° 1001° | 5000° Ca500 | **** | · · · · · · · · · · · · · · · · · · · | | | | | | | (SD) | .0767836 | Senior Strone | was sav | man mah | roder Matr | May was | **** | | | | | | 11 | 8911 | **** | **** **** | uw we | **** | *** | · · · | | | | | | 2 | 8901 | **** | using body | we we | | | *** | | | | | Operator: GSP thod: 60102007 Sample Name: ICSAB in Time: 07/27/00 15:16:51 iment: ide: CONC Corr. Factor: 1 Corr. Factor: 1 | | NC COII. | ractor: 1 | | | | | | |-------------------|---|--|--|---|---|-------------------------------------|-------------------------------------| | Flam | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | Vos | .55647 | 535.03 | 1.0744 | 1.0709 | 1.0447 | .52078 | 467.41 | | SOSV | .00249 | 2.24 | .0093 | .0078 | .0049 | .00261 | 2.73 | | RSD | .44828 | .41942 | .86342 | .72870 | .47222 | .50162 | .58306 | | | .55471
.55824 | 533.44
536.61 | 1.0678
1.0809 | 1.0653 | 1.0413
1.0482 | .51893
.52262 | 465.49
469.34 | | nrors | QC Pass | stue | .50000 | 510.00 | 1.0000 | 1.0000 | 1.0000 | .50000 | 510.00 | | ange | .10000 | 102.00 | .20000 | .20000 | .20000 | .10000 | 102.00 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Unats | ppm | Avge | .50081 | 1.0256 | 1.0452 | 1.0991 | 213.49 | 190.01 | 14.294 | | SDev | .00267 | .0058 | .0067 | .0048 | 1.04 | .93 | .051 | | RSD | .53234 | .56251 | .64530 | .43357 | .48821 | .49141 | .35958 | | | .49893 | 1.0215 | 1.0404 | 1.0958 | 212.75 | 189.35 | 14.258 | | | .50270 | 1.0297 | 1.0499 | 1.1025 | 214.23 | 190.67 | 14.331 | | | QC Pass
.50000
.10000 | QC Pass
1.0000
.20000 | QC Pass
1.0000
.20000 | QC Pass
1.0000
.20000 | QC Pass
210.00
42.000 | NOCHECK | QC Pass
10.000
5.0000 | | Sev
Sep
Sep | Mg2790
ppm
576.96
2.81
.48739 | Mn2576
ppm
1.0563
.0049
.46262 | Mo2020
ppm
1.0526
.0088
.83174 | Na3302
ppm
12.553
.077
.61614 | N12316
ppm
.98110
.00688
.70126 | Pb2203
1.0396
.0073
.70455 | Se1960
1.0503
.0050
.47456 | | 1 | 574.98 | 1.0528 | 1.0464 | 12.498 | . 97624 | 1.0345 | 1.0468 | | 12 | 578.95 | 1.0598 | 1.0587 | 12.607 | . 98597 | 1.0448 | 1.0538 | | Errors | QC Pass | Value | 510.00 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Range | 102.00 | .20000 | .20000 | 5.0000 | .20000 | .20000 | .20000 | | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | Units | ppm | Avge | 1.0402 | 1.0749 | 1.0351 | 1.0376 | 1.0556 | 1.0394 | 1.0087 | | SDev | .0077 | .0068 | .0041 | .0060 | .0133 | .0037 | .0072 | | KRSD | .73621 | .63047 | .39139 | .57863 | 1.2579 | .35153 | .71809 | | #1 | 1.0347 | 1.0701 | 1.0322 | 1.0334 | 1.0462 | 1.0368 | 1.0036 | | #2 | 1.0456 | 1.0797 | 1.0380 | 1.0419 | 1.0650 | 1.0420 | 1.0139 | | Errors | QC Pass | Value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | Range | .20000 | .20000 | .20000 | .20000 | .20000 | .20000 | .20000 | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | Analysis | Report | QC Sta | ndard | 07/27 | 46 PM | page 2 | | |--|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------|--------------------------| | Units
Avge
SDev
%RSD | ppm
1.0678
.0056
.52782 | ppm
1.0256
.0082
.79642 | ppm
1.0806
.0095
.88256 | ppm
1.0352
.0027
.26193 | ppm
1.3375
.0062
.46322 | | | | #1
#2 | 1.0638
1.0718 | 1.0198 | 1.0739
1.0874 | 1.0333
1.0371 | 1.3331
1.3419 | | | | Errors
Value
Range | NOCHECK | CHECK NOCHECK | | NOCHECK | QC Pass
1.0000
.50000 | | | | IntStd
Mode
Elem
Waylen
Avge
SDev
ARSD | 1
Counts
Y
371.030
8848
33.48607
.3784696 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED

 | | (1)
(2) | 8871
8824 | | NATION NATION | NAME SERVE | Waler Mader | 100 000
100 000 | New York | Of Standard 07/27/00 03.24-50 DM analysis Report QC Standard 07/27/00 03:26:50 PM Operator: GSP page 1 ethod: 60102007 Sample Name: CCV1 Run Time: 07/27/00 15:21:55 comment: rode: CONC Corr. Factor: 1 | mpde: Cu | inc corr. | . Factor: . | Ţ | | | | | |--|--------------------|------------------|---------|---|-----------------|-----------------|-------------------| | Elem | Ag3280 | A13082 | As1890 | B_2496 | Ba4934 | Be3130 | Ca3179 | | Units | ppm | mag | mag | mag | mag | ppm | ppm | | Avge | .50296 | 10.298 | 1.0245 | 1.0001 | 1.0040 | .52799 | 10.851 | | SDev | .00019 | .047 | .0001 | .0018 | .0002 | .00064 | .053 | | %RSD | .03752 | . 45775 | .00960 | .17569 | .01616 | .12042 | . 48873 | | | | | | | | | | | #1 | .50283 | 10.265 | 1.0245 | . 99887 | 1.0039 | .52754 | 10.813 | | ¥2 | .50310 | 10.332 | 1.0244 | 1.0014 | 1.0041 | .52844 | 10.888 | | Errors | QC Pass | Value | .50000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | .50000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | | | | | | | | 101000 | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | Units | ppm | ppm | ppm | mag | ppm | ppm | ppm | | Avge | .53313 | 1.0531 | 1.0560 | .99190 | 10.573 | 10.593 | 9.7978 | | * SDe∨
************************************ | .00021 | .0006 | .0006 | .00036 | .046 | .035 | .0017 | | ್ಷಿಗಾರ | .03861 | .05828 | .05918 | . 03576 | . 43076 | .32712 | .01695 | | #1 | .53327 | 1.0535 | 1.0555 | .99215 | 10.541 | 10.569 | 9.7966 | | #2 | .53298 |
1.0526 | 1.0564 | . 99165 | 10.606 | 10.618 | 9.7990 | | \$ | | | | | | 101010 | 7.770 | | Errors | QC Pass | QC Pass | QC Pass | QC Pass | NOCHECK | QC Pass | QC Pass | | .,∀alue | .50000 | 1.0000 | 1.0000 | 1.0000 | | 10.000 | 10.000 | | Range | 10.000 | 10.000 | 10.000 | 10.000 | | 10.000 | 10.000 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na3302 | N 5 0 7 1 2 | D = 0.00.7 | 0-1040 | | Units | ppm | maga | maga | ppm | Ní2316
ppm | Pb2203 | Se1960 | | Avge | 10.713 | 1.0403 | 1.0301 | 9.9470 | 1.0386 | 1.0481 | 1.0441 | | SDev | .068 | .0008 | .0065 | . 0296 | .0002 | .0039 | .0004 | | *RSD | .63927 | .07233 | .62953 | . 29720 | .02380 | .37457 | .04155 | | | | | | | | | | | #1 | 10.664 | 1.0398 | 1.0255 | 9.9261 | 1.0384 | 1.0453 | 1.0444 | | | 10.761 | 1.0408 | 1.0346 | 9.9679 | 1.0387 | 1.0508 | 1.0438 | | Errors | QC Pass | Waj ue | 10.000 | 1.0000 | 1.0000 | 10.000 | 1.0000 | 1.0000 | 1.0000 | | Pange | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | G | | | | | | | | | | Sb2068 | \$n1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | -Units | ppm | evge : | . 96983
. 00666 | 1.0533 | 1.0090 | 1.0071
.0015 | 1.0337 | 1.0255 | 1.0978 | | 9-30 | .68655 | .00241 | .04998 | .15118 | .0032
.31238 | .0003
.02767 | . 0030
. 26884 | | 7.7 | | .002-41 | .04770 | * | . OIZOG | .02/6/ | . 20004 | | #1 | .96512 | 1.0533 | 1.0087 | 1.0060 | 1.0314 | 1.0253 | 1.0957 | | #2 | . 97454 | 1.0533 | 1.0094 | 1.0082 | 1.0360 | 1.0257 | 1.0999 | | 1 | | | | | | | | | Errors | QC Pass | Value
Range | 1.0000 | 1.0000
10.000 | 1.0000 | 1.0000
10.000 | 1.0000 | 1.0000 | 1.0000 | | | . 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | | 2 vem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | L16707 | | | | 7 P. C. C. | | • | • | , | • | | | | iely ęt | Report | QC Sta | ndard | 07/27 | 50 PM | page 2 | | | | | |--|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------|--------------|--|--|--| | jnits
Avge
Spev
ARSD | ppm
1.0611
.0021
.19581 | ppm
1.0416
.0048
.46547 | ppm
1.0629
.0006
.05171 | ppm
1.0347
.0004
.03636 | ppm
1.0327
.0009
.08249 | | | | | | | #1
#2 | 1.0596
1.0625 | 1.0382 | 1.0633
1.0625 | 1.0350
1.0345 | 1.0321
1.0333 | | | | | | | Errors
Value
Range | Value | | NOCHECK | NOCHECK | QC Pass
1.0000
10.000 | | | | | | | IntStd
Mode
Elem
Wavlen
Avge
SDev
%RSD | 1
Counts
Y
371.030
9889
25.32740
.2561124 | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | | | #1
#2 | 9871
9907 | MARK MARK | 410 mb | MAN 2000- | easter paties, | 1000 1001 · | | | | | Blank Sample 07/27/00 03:31:54 PM nage it Report Blank Sample 07/27/00 03:31:54 PM page **0102007** Sample Na **07/27/0**0 15:26:58 Sample Name: CCB1 (Operator: GSP | | | NC Corr. | Factor: 1 | | | | | | |--|--|---|---|---|---|---|---|---| | | TENTON TO THE TE | Ag3280
ppm
.00045
.00032
71.003 | A13082
ppm
.07573
.02364
31.222 | As1890
ppm
.00126
.00007
5.5033 | B_2496
ppm
.00333
.00031
9.2686 | Ba4934
ppm
.00077
.00008
9.8716 | Be3130
ppm
.00051
.00001
1.8076 | Ca3179
ppm
.06120
.02523
41.229 | | | 11 2 | .00022 | .05901
.09245 | .00121
.00131 | .00355
.00311 | .00072
.00083 | .00050 | .04335 | | 000000000000000000000000000000000000000 | Errors | LC Pass | | 1gh | .00500 | .10000 | .00500 | .10000 | .01000 | .00300 | .50000 | | | 1eow | 00500 | 10000 | 00500 | 10000 | 01000 | 00300 | 50000 | | | Elem | Cd2265 | Co2286 | Cr2677 | Cu3247 | Fe2714 | Fe2599 | K_7664 | | | Units | ppm | | Avge | .00047 | .00051 | .00140 | 00019 | .03825 | .02988 | 00588 | | | SDev | .00005 | .00006 | .00041 | .00023 | .00375 | .01072 | .00102 | | | %RSD | 9.6589 | 11.033 | 29.181 | 122.26 | 9.8087 | 35.876 | 17.360 | | 80000000000000000000000000000000000000 | #1 | .00043 | .00054 | .00169 | 00003 | .03559 | .02230 | 00660 | | | #2 | .00050 | .00047 | .00111 | 00035 | .04090 | .03746 | 00516 | | で またの の で の で の で の で の で の で の で の で の で の | Errors
High
Low | LC Pass
.00500
00500 | LC Pass
.01000
01000 | LC Pass
.00500
00500 | LC Pass
.01000
01000 | NOCHECK | LC Pass
.10000
10000 | LC Pass
1.0000
-1.0000 | | | Elem
Units
Avge
SDev
%RSD | Mg2790
ppm
.05877
.02951
50.211 | Mn2576
ppm
.00081
.00003
3.0083 | Mo2020
ppm
.00167
.00064
38.231 | Na3302
ppm
05258
.03275
62.294 | Ní2316
ppm
.00171
.00019
11.273 | Pb2203
.00035
.00047
133.97 | Se1960
.00007
.00027
371.59 | | # 100 m | #1 | .03791 | .00080 | .00212 | 07574 | .00157 | .00002 | .00026 | | | #2 | .07964 | .00083 | .00122 | 02942 | .00184 | .00069 | 00012 | | | Errors | LC Pass | LC Pass | LC Pass | LC Pass · | LC Pass | LC Pass | LC Pass | | | High | .50000 | .01000 | .01000 | 1.0000 | .00500 | .00500 | .01000 | | | Low | 50000 | 01000 | 01000 | -1.0000 | 00500 | 00500 | 01000 | | The state of s | Elem | Sb2068 | Sn1899 | Sr4215 | Ti3349 | T11908 | V_2924 | Zn2062 | | | Units | ppm | | Avge | .00494 | .00313 | .00078 | .00102 | 00027 | .00085 | .00102 | | | SDev | .00125 | .00060 | .00007 | .00007 | .00310 | .00006 | .00018 | | | %RSD |
25.372 | 19.251 | 8.9408 | 7.1739 | 1134.0 | 6.9291 | 17.492 | | A TO SALE LEGISLO | #1
#2 | .00582
.00405 | .00356
.00271 | .00073
.00083 | .00107
.000 9 7 | .00192
00246 | .00089 | .00114 | | Section of the sectio | Errors | LC Pass | | High | .05000 | .01000 | .00500 | .00500 | .01000 | .01000 | .02000 | | | Low | 05000 | 01000 | 00500 | 00500 | 01000 | 01000 | 02000 | | | Elem | 2203/1 | 2203/2 | 1960/1 | 1960/2 | Li6707 | | | | allysis | Report | Blank : | Sample | 07/27, | 07/27/00 03:31:54 PM | | | | | | | | |-----------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------|-------------------------|--|--|--|--|--| | POTES
POE
PEV
PSSD | ppm
00054
.00092
172.19 | ppm
.00080
.00025
31.084 | ppm
.00072
.00083
115.51 | ppm
00025
.00082
328.68 | ppm
.00073
.00000
.30887 | | | | | | | | | | 00119
.00012 | .00062
.00097 | .00013 | .00033
00083 | .00073
.00074 | | | | | | | | | eors
The | NOCHECK | NOCHECK | 'NOCHECK | NOCHECK | LC Pass
.05000
05000 | | | | | | | | | | 1
Counts
Y | 2
NOTUSED | 3
NOTUSED | 4
NOTUSED | 5
NOTUSED | 6
NOTUSED | 7
NOTUSED | | | | | | | | 371.030
9957
28.72276 | 1000 1000
1000 1000 | 100° 100° | Note State | 100° 100° | 000° 100° | 1000 00000
3000 0000 | | | | | | | (SD | . 2884562 | Mary Later | tale san | 1000 SE-1- | 1000-1000- | 1000° 100° | was block | | | | | | | | 9978
9937 | NAME AND | 1151 MA | value adapt | 1000° 5000° | 1000 box | ****** ****** | | | | | | 7/24/000 | i | 17. / 1/C (VM) | Spike M/248/ Spike | 1000 | Final Project Check: (R 67) H/60 Lab Spike # | 20% | HAD - 00/5// | 002B-1 | \sim | op:3050A | 26.75 | 12/00 12/0 | 11. | MISC 9. | FLAME TCLP 7. | ICP AA HG 5. | ब | 2. | 1.00 | Job No: 1025 SAME | | |---|----------------|--------------------|-----------------|--|----------------------------------|--------------|--------|--------|----------|-------|------------|-----|---------|---------------|--------------|---|--------|------|--------------------------------|--| | | sport | 12/100 | 1984:0W-1468-50 | Lab Spike #2 00 7 5 4 3 -/ | Lab Blank Lab Spike #1 00 ウジ4スー/ | | | | | 100 | 1./00 | | | | | | | | SAMPLE IDIMIX/DESCRIPTION D.D. | D SDG BENCH BEAKER# | | | | | | 1.05 | 1.05 | /. 09 | | | | | | | | | | | | - 1.11 | | WET WEIGHTIG! | | | | | | | | | | | | | | | | | • | | | R*XN | R*XN | DF COMMENTS | | ## DIGESTION SOLIDS ## Appendix E FDEP Letters awton Chiles ## Department of Environmental Protection Twin Towers Building 2500 Blair Stone Road Tallahassee, Rorida 32399-2400 Virginia & Wetnere Secretary April 27, 1998 Ms. Linda Martin Department of the Navy, Southern Division Naval Facilities Engineering Command 2155 Eagle Drive, PO Box 190010 North Charleston, SC 29419-9010 file: arsenicl.doc RE. Request for Site-Specific Arsenic Soil Cleanup Levels: Covered Landfill Sites, NAS Whiting Field Dear Ms. Martin: I have reviewed the request for approval of a site-specific Soil Cleanup Goal for arsenic at the "covered landfill sites" at NAS Whiting Field from Mr. Gerald Walker, ABB Environmental Services, dated April 22, 1998 (received April 22, 1998). Based on the prior presentation to Department Staff and the summary information furnished in the letter and the attached Appendix I, the request is granted to utilize a site-specific Soil Cleanup Goal for arsenic of 4.62 mg/kg at Sites 1, 2, 9, 10, 11, 12, 13, 14, 15 and 16., with the following conditions: - The sites may be utilized for activities that involve less than full-time contact with the site. This may include, but is not limited to, a.) parks b.) recreation areas that receive heavy use (such as soccer or baseball fields) or, c.) agricultural sites where farming practices result in moderate site contact (approximately 100 days/year, or less). - The Navy must assure adherence to the land use by incorporating the site and conditions in a legally binding Land Use Contol agreement. - The above Soil Cleanup Goal shall not be utilized at any other site without specific Department approval. If you have questions or require further clarification, please contact me at (904) 921-4230. 1 James H. Cason, P.C. Remedial Project Manager "Protect, Conserve and Manage Florida's Environment and Natural Resources" Printed on recycled paper. ## Department of Environmental Protection Jeb Bush Governor Twin Towers Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 David B. Struhs Secretary April 11, 2001 Mr. James Holland NAS Whiting Field 7151 USS Wasp Street Milton, Florida 32570-6159 file: arsenic2.doc RE: Analysis of Soil for Arsenic at Outlying Landing Fields Dear Mr. Holland: I have reviewed the above document dated April 3, 2001 (received April 9, 2001). The document describes soil sampling locations and analytical results for arsenic at four outlying landing fields associated with, but not adjacent to, NAS Whiting Field. Those facilities are Pace Field, Spencer Field, Santa Rosa Field and Harold Field. There are no known contaminated sites at those fields. Utilizing the information furnished in the document and in comparison with similar data from NAS Whiting Field, the Navy has requested a determination that arsenic levels observed at NAS Whiting Field are comparable with those seen at the outlying landing fields and that they are in naturally occurring concentrations. Based on my review of those data, I have concluded that arsenic levels observed in soils at NAS Whiting Field are within the range of concentrations observed at the outlying fields and that they therefore are in naturally occurring concentrations. This determination may be applied only to arsenic in the soil for sites at NAS Whiting Field for which sufficient data presently exist. Please be aware that this finding does not preclude a future determination of a release of arsenic at any particular site if information and data warrant that conclusion. If you have questions or need further clarification please contact me at (850) 921-4230. Sincerely, ames H. Cason, P.G. Remedial Project Manager cc: Mollie Palmer, Office of the Secretary Linda Martin, Southern Division, North Charleston Amy Twitty, CH2M Hill, Navarre B JIC JE EST GE "Protect, Conserve and Manage Florida's Environment and Natural Resources" Printed on recycled paper.